Porcine epidemic diarrhea virus (PEDV) is a member of the family Coronaviridae and can cause severe outbreaks of diarrhea in piglets from different age groups. Here, we report the complete genome sequence (28,028 nt) of a PEDV strain isolated during a novel outbreak in Belgium.
Diarrhea outbreaks in pig farms have raised major concerns in Europe and USA, as they can lead to dramatic pig losses. During a suspected outbreak in Belgium of porcine epidemic diarrhea virus (PEDV), we performed viral metagenomics to assess other potential viral pathogens. Although PEDV was detected, its low abundance indicated that other viruses were involved in the outbreak. Interestingly, a porcine bocavirus and several enteroviruses were most abundant in the sample. We also observed the presence of a porcine enterovirus genome with a gene insertion, resembling a C28 peptidase gene found in toroviruses, which was confirmed using re-sequencing, bioinformatics, and proteomics approaches. Moreover, the predicted cleavage sites for the insertion suggest that this gene was being expressed as a single protein, rather than a fused protein. Recombination in enteroviruses has been reported as a major mechanism to generate genetic diversity, but gene insertions across viral families are rather uncommon. Although such inter-family recombinations are rare, our finding suggests that these events may significantly contribute to viral evolution.
In recent years, several entry mediators have been characterized for porcine reproductive and respiratory syndrome virus (PRRSV). Porcine sialoadhesin [pSn, also known as sialic acid-binding immunoglobulin-type lectin (Siglec-1)] and porcine CD163 (pCD163) have been identified as the most important host entry mediators that can fully coordinate PRRSV infection into macrophages. However, recent isolates have not only shown a tropism for sialoadhesin-positive cells, but also for sialoadhesin-negative cells. This observation might be partly explained by the existence of additional receptors that can support PRRSV binding and entry. In the search for new receptors, recently identified porcine Siglecs (Siglec-3, Siglec-5 and Siglec-10), members of the same family as sialoadhesin, were cloned and characterized. Only Siglec-10 was able to significantly improve PRRSV infection and production in a CD163-transfected cell line. Compared with sialoadhesin, Siglec-10 performed equally effectively as a receptor for PRRSV type 2 strain MN-184, but it was less capable of supporting infection with PRRSV type 1 strain LV (Lelystad virus). Siglec-10 was demonstrated to be involved in the endocytosis of PRRSV, confirming the important role of Siglec-10 in the entry process of PRRSV. In conclusion, it can be stated that PRRSV may use several Siglecs to enter macrophages, which may explain the strain differences in the pathogenesis.
Cellular entry mediators define whether the cell is permissive to PRRSV infection. Porcine sialoadhesin (pSn, Siglec-1) and CD163 are main entry mediators facilitating infection of porcine macrophages by PRRSV. Recently, Siglec-10 was demonstrated to be an alternative receptor for PRRSV. To examine if virulence and pathogenicity of PRRSV strains could be correlated with the use of different Siglecs, a PK15 cell line recombinantly expressing Siglec-1 and CD163 (PK15S1–CD163) and a PK15 cell line recombinantly expressing Siglec-10 and CD163 (PK15S10–CD163) were used to compare the virus replication of 7 genotype 1 subtype 1 strains (G1s1), 2 genotype 1 subtype 3 (G1s3) strains and 5 genotype 2 (G2) strains. Some strains (08VA (G1s1), 13V117 (G1s1), 17V035 (G1s1), VR2332 (G2)) were poor virus producers (<104 TCID50/mL), while other strains (07V063 (G1s1), 13V091 (G1s1), Su1-Bel (G1s3), MN-184 (G2), Korea17 (G2) and SDSU-73 (G2)) easily grew up to ≥106 TCID50/mL. PK15S10–CD163 cells exhibited a higher efficiency in virus production per infected cell than the PK15S1–CD163 cells. The G1s1 strains LV and 07V063 infected more cells in the PK15S1–CD163, whereas the 94V360 and 08VA strains preferred PK15S10–CD163. The highly virulent G1s3 strains Lena and Su1-Bel showed a strong preference for PK15S1–CD163. The G2 strains MN-184, SDSU-73, Korea17 had a much higher infection rate in PK15S10–CD163, while the reference strain VR2332 and the NADC30 strain had a slight preference for PK15S1–CD163. Differences in receptor use may influence the outcome of a PRRSV infection in pigs and explain in part the virulence/pathogenicity of PRRSV strains.Electronic supplementary materialThe online version of this article (10.1186/s13567-018-0569-z) contains supplementary material, which is available to authorized users.
Porcine sialoadhesin (pSn; a sialic acid-binding lectin) and porcine CD163 (pCD163) are molecules that facilitate infectious entry of porcine reproductive and respiratory syndrome virus (PRRSV) into alveolar macrophages. In this study, it was shown that murine Sn (mSn) and human Sn (hSn), like pSn, can promote PRRSV infection of pCD163-expressing cells. Intact sialic acidbinding domains are crucial, since non-sialic acid-binding mutants of pSn, mSn and hSn did not promote infection. Endodomain-deletion mutants of pSn, mSn and hSn promoted PRRSV infection less efficiently, but also showed markedly reduced expression levels, making further research into the potential role of the Sn endodomain in PRRSV receptor activity necessary. These data further complement our knowledge on Sn as an important PRRSV receptor, and suggest -in combination with other published data -that species differences in the main PRRSV entry mediators Sn and CD163 do not account for the strict host species specificity displayed by the virus.The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the major disease problems in the swine industry today. The virus specifically infects swine and there is currently no evidence that any other species is susceptible to PRRSV infection. Within its host, PRRSV shows a narrow cell tropism, with macrophages being major target cells (Duan et al., 1997a, b;Teifke et al., 2001). As transfection of the viral RNA genome in otherwise nonpermissive cells results in productive infection, it was postulated that the restricted cell tropism is linked with the presence of specific entry mediators in target cells (Kreutz, 1998;Meulenberg et al., 1998). PRRSV entry in alveolar macrophages has already been extensively studied and a number of entry mediators have been identified (Van Breedam et al., 2010a). Two of these molecules appear to be crucial for efficient infection of porcine alveolar macrophages: sialoadhesin (Sn/Siglec-1/CD169) and CD163. Sn mediates efficient binding and internalization of the virus (Delputte et al., 2007;Van Breedam et al., 2010b;Vanderheijden et al., 2003), whereas CD163 is most likely involved in genome release (Calvert et al., 2007;Van Gorp et al., 2008). For CD163, it was reported that not only the porcine variant of this protein, but also several homologues originating from other mammalian species, display a PRRSV entry mediator activity (Calvert et al., 2007). In addition, the CD163 endodomain was found to be dispensable for its functionality as a PRRSV entry mediator (Lee & Lee, 2010; Van Gorp et al., 2010). Although the PRRSV GP 2 and GP 4 glycoproteins were identified as potential interaction partners for CD163 (Das et al., 2010), the exact functioning of this molecule in PRRSV infection remains unclear. This stands in sharp contrast to our current knowledge on Sn. Ample data have shown that sialic acids on the virion surface interact with the Nterminal sialic acid-binding domain of Sn, upon which the virus-receptor complex is internalized via a process of clathrin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.