Parotoid gland secretions of toad species are a vast reservoir of bioactive molecules with a wide range of biological properties. Herein, for the first time, it is described the isolation by preparative reversed-phase HPLC and the structure elucidation by NMR spectroscopy and/or mass spectrometry of nine major bufadienolides from parotoid gland secretions of the Cuban endemic toad Peltophryne fustiger: ψ-bufarenogin, gamabufotalin, bufarenogin, arenobufagin, 3-(N-suberoylargininyl) marinobufagin, bufotalinin, telocinobufagin, marinobufagin and bufalin. In addition, the secretion was analyzed by UPLC-MS/MS which also allowed the identification of azelayl arginine. The effect of arenobufagin, bufalin and ψ-bufarenogin on Na(+)/K(+)-ATPase activity in a human kidney preparation was evaluated. These bufadienolides fully inhibited the Na(+)/K(+)-ATPase in a concentration-dependent manner, although arenobufagin (IC50 = 28.3 nM) and bufalin (IC50 = 28.7 nM) were 100 times more potent than ψ-bufarenogin (IC50 = 3020 nM). These results provided evidence about the importance of the hydroxylation at position C-14 in the bufadienolide skeleton for the inhibitory activity on the Na(+)/K(+)-ATPase.
The Chemical Weapons Convention (CWC) is an international disarmament treaty that prohibits the development, stockpiling and use of chemical weapons. This treaty has 193 States Parties (nations for which the treaty is binding) and entered into force in 1997. The CWC contains schedules of chemicals that have been associated with chemical warfare programmes. These scheduled chemicals must be declared by the States that possess them and are subject to verification by the Organisation for the Prohibition of Chemical Weapons (OPCW, the implementing body of the CWC). Isotopically labelled and stereoisomeric variants of the scheduled chemicals have presented ambiguities for interpretation of the requirements of treaty implementation, and advice was sought from the OPCW’s Scientific Advisory Board (SAB) in 2016. The SAB recommended that isotopically labelled compounds or stereoisomers related to the parent compound specified in a schedule should be interpreted as belonging to the same schedule. This advice should benefit scientists and diplomats from the CWC’s State Parties to help ensure a consistent approach to their declarations of scheduled chemicals (which in turn supports both the correctness and completeness of declarations under the CWC). Herein, isotopically labelled and stereoisomeric variants of CWC-scheduled chemicals are reviewed, and the impact of the SAB advice in influencing a change to national licensing in one of the State Parties is discussed. This outcome, an update to national licensing governing compliance to an international treaty, serves as an example of the effectiveness of science diplomacy within an international disarmament treaty.
The Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) has provided advice on the long-term storage and stability of samples collected in the context of chemical weapons investigations. The information they compiled and reviewed is beneficial to all laboratories that carry out analysis of samples related to chemical warfare agents and is described herein. The preparation of this report was undertaken on request from the OPCW Director-General. The main degradation products for chemicals on the Schedules in the Annex on Chemicals of the Chemical Weapons Convention are tabulated. The expertise of the 25 scientists comprising the SAB, a review of the scientific literature on environmental and biomedical sample analysis, and answers to a questionnaire from chemists of nine OPCW Designated Laboratories, were drawn upon to provide the advice. Ten recommendations to ensure the long-term storage and stability of samples collected in relation to the potential use of chemical weapons were provided and are repeated here for the consideration of all laboratories worldwide.
Rationale
Host defense peptides accumulated in the skin glands of the animals constitute the basis of the adaptive and immune system of amphibians. The peptidome of the Cuban frog Osteopilus septentrionalis was established using tandem mass spectrometry as the best analytical tool to elucidate the sequence of these peptides.
Methods
Manual interpretation of complementary collision‐induced dissociation (CID), higher energy collision‐induced dissociation (HCD), and electron transfer dissociation (ETD) tandem mass spectra recorded with an Orbitrap Elite mass spectrometer in liquid chromatography/mass spectrometry (LC/MS) mode was used to sequence the peptide components of the frog skin secretion, obtained by mild electrostimulation.
Results
Although the vast majority of amphibian peptides discovered so far are cationic, surprisingly only anionic peptides were identified in the skin secretion of the Cuban frog Osteopilus septentrionalis. Mass spectrometry allowed the sequences to be established of 16 representatives of new peptide families: septenins 1 and septenins 2. The highest sequence coverage when dealing with these anionic peptides was obtained with CID normalized collision energy 35 and HCD normalized collision energy 28.
Conclusions
Mirror‐symmetrical peptides are sequenced using N‐terminal acetylation. Acetylated Ser is reliably distinguished from isomeric Glu by the loss of ketene from b‐ions containing the corresponding residue. Calculations of the physicochemical and structural properties of the discovered anionic septenins 1 and 2 allowed the mechanism of their interaction with microbe cells to be postulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.