Cysteine (Cys) plays a major role in growth and survival of the human parasite Entamoeba histolytica. We report here the crystal structure of serine acetyltransferase (SAT) isoform 1, a cysteine biosynthetic pathway enzyme from E. histolytica (EhSAT1) at 1.77 Å , in complex with its substrate serine (Ser) at 1.59 Å and inhibitor Cys at 1.78 Å resolution. EhSAT1 exists as a trimer both in solution as well as in crystal structure, unlike hexamers formed by other known SATs. The difference in oligomeric state is due to the N-terminal region of the EhSAT1, which has very low sequence similarity to known structures, also differs in orientation and charge distribution. The Ser and Cys bind to the same site, confirming that Cys is a competitive inhibitor of Ser. The disordered C-terminal region and the loop near the active site are responsible for solvent-accessible acetyl-CoA binding site and, thus, lose inhibition to acetyl-CoA by the feedback inhibitor Cys. Docking and fluorescence studies show that EhSAT1 C-terminal-mimicking peptides can bind to O-acetyl serine sulfhydrylase (EhOASS), whereas native C-terminal peptide does not show any binding. To test further, C-terminal end of EhSAT1 was mutated and found that it inhibits EhOASS, confirming modified EhSAT1 can bind to EhOASS. The apparent inability of EhSAT1 to form a hexamer and differences in the C-terminal region are likely to be the major reasons for the lack of formation of the large cysteine synthase complex and loss of a complex regulatory mechanism in E. histolytica.In bacteria and plants, L-cysteine is synthesized from L-Serine by two key enzymes serine acetyltransferase (SAT) 3 and O-acetyl serine sulfhydrylase (OASS). SAT converts L-Serine to O-acetyl serine by transferring an acetyl group from acetylCoA. Later, OASS converts the O-acetyl serine (OAS) to L-cys-
The explosive epidemicity of amoebiasis caused by the facultative gastrointestinal protozoan parasite Entamoeba histolytica is a major public health problem in developing countries. Multidrug resistance and side effects of various available antiamoebic drugs necessitate the design of novel antiamobeic agents. The cysteine biosynthetic pathway is the critical target for drug design due to its significance in the growth, survival and other cellular activities of E. histolytica. Here, we have screened 0.15 million natural compounds from the ZINC database against the active site of the EhOASS enzyme (PDB ID. 3BM5, 2PQM), whose structure we previously determined to 2.4 Å and 1.86 Å resolution. For this purpose, the incremental construction algorithm of GLIDE and the genetic algorithm of GOLD were used. We analyzed docking results for top ranking compounds using a consensus scoring function of X-Score to calculate the binding affinity and using ligplot to measure protein-ligand interactions. Fifteen compounds that possess good inhibitory activity against EhOASS active site were identified that may act as potential high affinity inhibitors. In vitro screening of a few commercially available compounds established their biological activity. The first ranked compound ZINC08931589 had a binding affinity of ∼8.05 µM and inhibited about 73% activity at 0.1 mM concentration, indicating good correlation between in silico prediction and in vitro inhibition studies. This compound is thus a good starting point for further development of strong inhibitors.
All-trans retinoic acid (AtRA), an active metabolite of vitamin A, is recognized for its classical action as an endocrine hormone that triggers genomic effects mediated through nuclear receptors RA receptors (RARs). New evidence shows that atRA-mediated cellular responses are biphasic with rapid and delayed responses. Most of these rapid atRA responses are the outcome of its binding to cellular retinoic acid binding protein 1 (CRABP1) that is predominantly localized in cytoplasm and binds to atRA with a high affinity. This review summarizes the most recent studies of such non-genomic outcomes of atRA and the role of CRABP1 in mediating such rapid effects in different cell types. In embryonic stem cells (ESCs), atRA-CRABP1 dampens growth factor sensitivity and stemness. In a hippocampal neural stem cell (NSC) population, atRA-CRABP1 negatively modulates NSC proliferation and affects learning and memory. In cardiomyocytes, atRA-CRABP1 prevents over-activation of calcium-calmodulin-dependent protein kinase II (CaMKII), protecting heart function. These are supported by the fact that CRABP1 gene knockout (KO) mice exhibit multiple phenotypes including hippocampal NSC expansion and spontaneous cardiac hypertrophy. This indicates that more potential processes/signaling pathways involving atRA-CRABP1 may exist, which remain to be identified.
Stemformatics is an established gene expression data portal containing over 420 public gene expression datasets derived from microarray, RNA sequencing and single cell profiling technologies. Developed for the stem cell community, it has a major focus on pluripotency, tissue stem cells, and staged differentiation. Stemformatics includes curated ‘collections’ of data relevant to cell reprogramming, as well as hematopoiesis and leukaemia. Rather than simply rehosting datasets as they appear in public repositories, Stemformatics uses a stringent set of quality control metrics and its own pipelines to process handpicked datasets from raw files. This means that about 30% of datasets processed by Stemformatics fail the quality control metrics and never make it to the portal, ensuring that Stemformatics data are of high quality and have been processed in a consistent manner. Stemformatics provides easy-to-use and intuitive tools for biologists to visually explore the data, including interactive gene expression profiles, principal component analysis plots and hierarchical clusters, among others. The addition of tools that facilitate cross-dataset comparisons provides users with snapshots of gene expression in multiple cell and tissues, assisting the identification of cell-type restricted genes, or potential housekeeping genes. Stemformatics is freely available at stemformatics.org.
Acinetobacter baumannii, one of the major Gram negative bacteria, causes nosocomial infections such as pneumonia, urinary tract infection, meningitis, etc. β-lactam-based antibiotics like penicillin are used conventionally to treat infections of A. baumannii; however, they are becoming progressively less effective as the bacterium produces diverse types of β-lactamases to inactivate the antibiotics. We have recently identified a novel β-lactamase, OXA-51 from clinical strains of A. baumannii from our hospital. In the present study, we generated the structure of OXA-51 using MODELLER9v7 and studied the interaction of OXA-51 with a number of β-lactams (penicillin, oxacillin, ceftazidime, aztreonam and imipenem) using two independent programs: GLIDE and GOLD. Based on the results of different binding parameters and number of hydrogen bonds, interaction of OXA-51 was found to be maximum with ceftazidime and lowest with imipenem. Further, molecular dynamics simulation results also support this fact. The lowest binding affinity of imipenem to OXA-51 indicates clearly that it is not efficiently cleaved by OXA-51, thus explaining its high potency against resistant A. baumannii. This finding is supported by experimental results from minimum inhibitory concentration analysis and transmission electron microscopy. It can be concluded that carbapenems (imipenem) are presently effective β-lactam antibiotics against resistant strains of A. baumannii harbouring OXA-51. The results presented here could be useful in designing more effective derivatives of carbapenem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.