Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV–vis–NIR spectroscopy and current–voltage (I–V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I–V characteristics of an a-C:I/n-Si junction.
Amorphous carbon-based material has attracted a considerable attention for optoelectronic and photovoltaic applications. This remarkable element has expected to have similar properties as silicon and highly stable. This work is focused on the deposition conditions of amorphous carbon thin film for optoelectronic and photovoltaic application. However, amorphous carbon has a complicated structure and high density of defects. Due to the limited factors of the deposited amorphous carbon film, a doping process is required. The amorphous carbon and iodine doped amorphous carbon thin films were deposited on glass and silicon substrates by thermal chemical vapor deposition (CVD) technique using camphor oil as the precursor. The effect of doping temperature in the a-C and a-C:I thin films on electrical and optical properties were characterized. The conductivity of a-C:I thin films increased with the doping temperature at 450°C and it shows large photoconductivity. The photovoltaic behaviour was improved by doping the a-C with the iodine. Effective doping will encourage the future prospect of low cost, clean and high efficiency of carbon-based device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.