In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions.
Particle manipulation is often required in the fabrication of microelectronic devices such as transistors and sensors. In this work, we succeeded in depositing aligned carbon nanotubes (CNTs) from an oxidized conglomerates carbon mixture using a simple low power procedure consisting of mild acid treatment and frequency-dependent dielectrophoretic (DEP) force. The treatment improved the dispersity and solubility of CNTs due to the functional groups introduced on their surface. The DEP force was generated with an AC signal of 1 MHz and 7.07 Vrms to attract the CNTs to a transparent electrode gap of 50 μm. Treatment quality was confirmed and characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), energy dispersive x-ray analysis (EDX) and high-resolution transmission electron microscopy (HRTEM). Ultraviolet-visible spectroscopy (UV-vis) and dynamic light scattering (DLS) were used to analyze the dispersity and solubility of carbon particles and their size distribution in different solvents. The morphology of the deposited CNTs and amorphous carbon were observed by optical microscope and field-emission scanning electron microscope (FESEM). The procedure used in this work is cost-effective, scalable and essential for future assembly. Furthermore, the transparency of the system makes it suitable for real-time observation, transparent sensors, and the ability to integrate it into microfluidic channels.
A series of Tm-doped zinc borotellurite glass have been extracted by conventional meltquenching method. The density was measured and it had been found that the value is increased by the increment of Tm 3+ ion. The elastic properties of the sample were determined by measuring longitudinal and shear velocities using an ultrasound technique. Then the values inserted into equations that calculate the elastic moduli of the glass samples. These include longitudinal, shear, bulk, Young's modulus and also the Poisson's ratio. The longitudinal and shear velocities show an increment as Tm 3+ increases from 0.01 to 0.03 mol content. The trend then changes as Tm 3+ increases from 0.03 to 0.05 mol content. In terms of elastic moduli, it produces a rapid increment with Tm 3+ until 0.03 mol content. But after that, the increment becomes slow until 0.05 mol of Tm 3+ . The value of Poisson's ratio decreases with the addition of Tm 3+ concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.