Waterflood is most commonly used secondary recovery mechanism in conventional sanstone reservoirs worldwide. Waterflooding assists in pressure maintenance and increases the field estimated ultimate recovery (EUR). Conformance in water injector wells plays an important role during waterflooding of a reservoir. Better conformance results in improved vertical sweep efficiency leading to higher recovery. Continuous injection of fluids into the reservoir at higher rates may create channels for preferential flow. Zones of higher permeability, leading to higher injectivity in selective zones, can also exist because of various lithological conditions and rock structures comprising of naturally occurring fractures or fissures. For injection wells, the entry of fluids into a set of perforations is governed by the quality of the perforations and the permeability of the formation at that depth. Preferential flow of injected fluids into selective pay intervals results in diminished overall sweep efficiency. (J. Vasquez, et.al., 2008). This paper discusses the use of thermally activated gels from polyacrylamides and metal chelates applied for selective reservoir matrix permeability reduction in an injector well. A low concentration, low viscosity delayed crosslinker gel system employing partially hydrolyzed polyacrylamide (PHPA) exhibiting 12-14% degree of hydrolysis level with chromium acetate as crosslinker offering delayed gelation time was used to selectively isolate one of the payzones. A non-profile retrievable (NPR) plug was installed to isolate the target interval from the rest of the pay zones to enable selective treatment of the interval using coiled tubing (CT). The fluid was customized to minimize CT friction while ensuring that the rheological properties of the fluid in the reservoir would achieve the desired diversion and allow delayed gel crosslinking mechanism assuring avoiding of gel crosslinking in CT while pumping in progress. Denser brine relative to the delayed gel density was spotted above the NPR plug to avoid gel settling on the plug for easy retrieval of the plug post-treatment. Injectivity was measured and subsequently, the treatment was placed as per design while constantly monitoring the pressures so as to qualitatively determine the effectiveness of the treatment placement. The treatment resulted in significant alteration in injectivity of the targeted zone. Post-treatment production logs confirmed an improvement in the injection conformance. Later, the zone was isolated and the bottommost zones were selectively stimulated enhancing the injection and thus improving sweep efficiency. Since the crosslinked gel system is not prone to any disintegration when in contact with acidic interventions, the treatment ensures a superior longevity of the conformance control when compared to other conventional diversion or zonal shut-off treatments. The success of the treatment substantiates that the CT deployed low viscosity, low concentration delayed crosslinked gel system application can be successfully extended to selective water shut-off applications in producer wells. The injector profile modification treatment executed offered a comprehensive solution to conformance issues enhancing volumetric sweep efficiency, pressure maintenance across depleted sands and avoiding further water cycling in producer wells.
The Mangala, Aishwaya & Bhagyam (MBA) fields are the largest discovered group of oil fields in Barmer Basin, Rajasthan, India. The fields contain medium gravity viscous crude (10-40cp) in high permeability (1-5 Darcy) sands. The fields have undergone pattern as well as peripheral water injection. In order to overcome adverse mobility ratio and improve sweep efficiency thereby increasing oil recovery, chemical EOR has been evaluated for implementation in these fields. The potential benefits from chemical enhanced oil recovery (EOR) had been recognized from early in the field development. Polymer flooding was identified for early implementation, which would be followed by stage wise implementation of Alkaline-Surfactant-Polymer (ASP) injection in fields like Mangala. Since the commencement of polymer injection, the Mangala field polymer injectors have displayed multiple injectivity issues. In addition, the Aishwarya and Bhagyam fields are dealing with low Void Replacement Ratios (VRR) for their ongoing water injection, which if not rectified could adversely affect recovery. While various types of injector stimulations are being used, injectivity increases are short lived. A new technique termed as ‘Sand Scouring’ has been successfully applied resuting in sustainable injectivity gains. The technique involves pumping creating a small fracture with a pad injected above fracturing pressure and then scouring the fracture face with low concentration 20/40 sand slugs in range of 0.5 to 1 PPA 20/40. The treatments are pumped at the highest achievable rates with the available pumping equipment within the completion pressure limitations. Based upon the available tankage, the scheduled is designed such that pumping of a fixed volume of sand stage, a quick shut-down allows for mixing the next stage of slurry. The pumping schedule and a ‘scouring’ intent is deliberately designed to avoid requirement of fracturing equipment, related cleanout equipment and resulting costs. The challenge of conformance is addressed by designing the pumping schedule to incorporate stages of particulate diverters and validated using pre and post injection logging surveys. . Sand scouring jobs in 16 wells have been conducted across Mangala, Bhagyam & Aishwarya injectors. Out of thesewells, 9 wells had zero injectivity while the other 7 required both injectivity and conformance improvement. Most of the treated wells resulted in multifold improvement of injectivity as compared to their prior injection parameters. Sand scouring resulted in sustained injection performance when compared with prior conventional methods of stimulation. Injectivity improvements from sand scouring lasted for an average of 3 months days as compared to 14 days for the conventional stimulations. Sand scouring evolution, design, results and plans for future improvement are all discussed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.