The synthesis of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)amino-4-(2,4 dichlorophenyl)thiazol-5-yl-diazenyl)phenyl is reported in this work with a detailed structural and molecular docking study on two SARS-COV-2 proteins: 3TNT and 6LU7. The studied compound has been synthesized by the condensation of cyanuric chloride with aniline and characterized with various spectroscopic techniques. The experimentally obtained spectroscopic data has been compared with theoretical calculated results achieved using high-level density functional theory (DFT) method. Stability, nature of bonding, and reactivity of the studied compound was evaluated at DFT/B3LYP/6-31 + (d) level of theory. Hyper-conjugative interaction persisting within the molecules which accounts for the bio-activity of the compound was evaluated from natural bond orbital (NBO) analysis. Adsorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties of the experimentally synthesized compound was studied to evaluate the pharmacological as well as in silico molecular docking against SARS-CoV-2 receptors. The molecular docking result revealed that the investigated compound exhibited binding affinity of −9.3 and −8.8 for protein 3TNT and 6LU7 respectively. In conclusion, protein 3TNT with the best binding affinity for the ligand is the most suitable for treatment of SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.