The rapid pace of development over the last few decades in the domain of machine learning mirrors the advances made in the field of quantum computing. It is natural to ask whether the conventional machine learning algorithms could be optimized using the present-day noisy intermediate-scale quantum technology. There are certain computational limitations while training a machine learning model on a classical computer. Using quantum computation, it is possible to surpass these limitations and carry out such calculations in an optimized manner. This study illustrates the working of the quantum support vector machine classification model which guarantees an exponential speed-up over its typical alternatives. This research uses the quantum SVM model to solve the classification task of a malignant breast cancer diagnosis. This study also demonstrates a comparative analysis of distinct forms of SVM algorithms concerning their time complexity and performances on standard evaluation metrics, namely accuracy, precision, recall, and F1-score, to exemplify the supremacy of quantum SVM over its conventional variants.
Knowledge from diverse application domains is organized as knowledge graphs (KGs) that are stored in RDF engines accessible in the web via SPARQL endpoints. Expressing a well-formed SPARQL query requires information about the graph structure and the exact URIs of its components, which is impractical for the average user. Question answering (QA) systems assist by translating natural language questions to SPARQL. Existing QA systems are typically based on application-specific human-curated rules, or require prior information, expensive pre-processing and model adaptation for each targeted KG. Therefore, they are hard to generalize to a broad set of applications and KGs. In this paper, we propose KGQAn, a universal QA system that does not need to be tailored to each target KG. Instead of curated rules, KGQAn introduces a novel formalization of question understanding as a text generation problem to convert a question into an intermediate abstract representation via a neural sequence-to-sequence model. We also develop a just-in-time linker that maps at query time the abstract representation to a SPARQL query for a specific KG, using only the publicly accessible APIs and the existing indices of the RDF store, without requiring any pre-processing. Our experiments with several real KGs demonstrate that KGQAn is easily deployed and outperforms by a large margin the state-of-the-art in terms of quality of answers and processing time, especially for arbitrary KGs, unseen during the training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.