The valorisation of vegetal waste as a source of crop nutrients constitutes a circular strategy to improve the sustainability of intensive horticultural production systems. The main goal of this study was to evaluate the effects of organic amendments derived from vegetal residues on the yield and quality of tomato. The following fertilisation treatments were carried out: fresh vegetal residues (4 kg m−1), compost (3 kg m−1), and vermicompost at two different doses (3 and 9 kg m−1), all derived from previous tomato crop vegetal residues, an organic treatment with goat manure (3 kg m−1), and a control mineral fertigation treatment. The highest yield was obtained with conventional mineral fertigation management, followed by vermicompost treatments at two different doses (3 and 9 kg m−1), with no statistical differences. The organic treatments with fresh crop residues, compost and goat manure resulted in lower yield. Regarding quality parameters, the lycopene content was higher in the mineral fertilisation and vermicompost at 3 kg m−1 treatment, while the other antioxidants measured were more concentrated in tomatoes fertilised with vermicompost treatment at 9 kg m−1 and goat manure. The plant nutrient management with vermicompost is the best circular solution, as it allows to reintegrate the residues generated in previous crop cycles into the soil, obtaining a yield equal to chemical input management and tomatoes with high nutritional quality.
The inadequate management of agro-waste in intensive agriculture has a severe negative impact on the environment. The valorization of crop residue as a source of crop nutrients is a valid alternative to close the nutrient cycle and reduce the use of external input. In this study, plant material was incorporated into the soil as fresh crop residue, after either composting and vermicomposting processes, to evaluate their effects on tomato yield and nutritional status (petiole sap analysis: NO3 and K+ concentration) over three crop cycles. A control treatment with mineral fertigation and an organic control treatment with goat manure were also included. Enzymatic activity and microbial population in the soil were evaluated. Although no differences between treatments were observed in the first cycle, in the second and third cycles, the yield obtained with the application of organic amendments derived from agro-waste was comparable to the yield obtained with mineral fertilizers. Overall, the sap analysis did not reveal a clear relationship with yield performances. The compost treatment resulted in higher microorganism presence in the soil. Soil dehydrogenase activity (DHA), acid phosphatase activity (ACP), and β-glucosidase activity (β-GLU) were generally more stimulated when organic amendments were used. The study confirms the applicability of soil fertilizers derived from agro-waste as a good alternative to mineral fertilizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.