The lowest contents of ATP and the lowest ATP/AMP concentration ratios are observed in the molluscan muscles that have very low rates of energy expenditure during contraction. The highest contents of ATP are observed in the extremely aerobic insect flight muscle and the extremely anaerobic pectoral muscle of the pheasant and domestic fowl. In general, the lowest ATP/AMP concentration ratios are observed for muscle in which the variation in the rate of energy utilization is small (e.g. some molluscan muscles, heart muscle); the highest ratios are observed in muscles in which this variation is large (lobster abdominal muscle, pheasant pectoral muscle, some insect flight muscles). This finding is consistent with the proposed role of AMP and the adenylate kinase reaction in the regulation of glycolysis. However, in the flight muscle of the honey-bee the ATP/AMP ratio is very low, so that glycolysis may be regulated by factors other than the variation in AMP concentration. The variation in the contents of arginine phosphate in muscle from the invertebrates is much larger than the variation in creatine phosphate in muscle from the vertebrates. The contents of hexose monophosphates and pyruvate are, in general, higher in the muscles of vertebrates than in those of the invertebrates. The contents of phosphoenolpyruvate are similar in all the muscles investigated, except for the honey-bee in which it is about 4-10-fold higher. The mass-action ratios for the reactions catalysed by phosphoglucoisomerase and adenylate kinase are very similar to the equilibrium constants for these reactions. Further, the variation in the mass-action ratios between muscles is small. It is concluded that these enzymes catalyse reactions close to equilibrium. However, the mass-action ratios for the reactions catalysed by phosphofructokinase and pyruvate kinase are much smaller than the equilibrium constants. The variation in the ratios between different muscles is large. It is concluded that these enzymes catalyse nonequilibrium reactions. Since the variation in the mass-action ratios for the reactions catalysed by the phosphagen kinases (i.e. creatine and arginine phosphokinases) is small, it is suggested that these reactions are close to equilibrium.
Arginine and creatine kinase activities in different muscles are compared with calculated maximum rates of ATP turnover. The magnitude of the kinase activities decreases in the following order: anaerobic muscles and vertebrate skeletal muscles greater than heart muscle greater than insect flight muscle. The maximum activity of phosphagen kinases (i.e. creatine kinase and arginine kinase), in the direction of phosphagen formation, is lower than the calculated maximum rate of ATP turnover in insect flight muscle or rat heart.
SUMMARYWe investigated the activation of three subfamilies of MAPKs (ERK, JNKs and p38-MAPK) by oxidative stress in the isolated perfused amphibian heart. Activation of p43-ERK by 100 μmol l-1 H2O2was maximally observed within 5 min, remained elevated for 30 min and was comparable with the effect of 1 μmol l-1 PMA. p43-ERK activation by H2O2 was inhibited by PD98059 but not by SB203580. The p46 and p52 species of JNKs were maximally activated by 2.5- and 2.1-fold,respectively, by 100 μmol l-1 H2O2 within 2 min. JNK activation was still detectable after 15 min, reaching control values at 30 min of treatment. p38-MAPK was maximally activated by 9.75-fold by 100 μmol l-1 H2O2 after 2 min and this activation progressively declined thereafter, reaching control values within 45 min of treatment. The observed dose-dependent profile of p38-MAPK activation by H2O2 revealed that 30 μmol l-1 H2O2 induced maximal phosphorylation,whereas 100–300 μmol l-1 H2O2induced considerable activation of the kinase. Our studies also showed that the phosphorylation of MAPKAPK2 by H2O2 followed a parallel time-dependent pattern and that SB203580 abolished this phosphorylation. Furthermore, our experiments clearly showed that 30 μmol l-1 H2O2 induced a strong, specific phosphorylation of HSP27. Our immunohistochemical studies showed that immune complexes of phosphorylated forms of both p38-MAPK and HSP27 were strongly enhanced by 30 μmol l-1 H2O2 in the perinuclear region as well as dispersedly in the cytoplasm of ventricular cells and that SB203580 abolished this phosphorylation. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in the amphibian heart. Stimulation of p38-MAPK and the consequent phosphorylation of HSP27 may be important in cardioprotection under such conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.