The objective of this work was to obtain biomaterials as gelatin films or biofilms produced by casting, reinforced with a microfiber (MF) from Agave angustifolia Haw bagasse and bentonite (BN) nanoparticles and evaluate the effect of such reinforcements at different concentrations. Agave microfibers were obtained by a non-abrasive chemical method. Three formulations based on gelatin with glycerol were reinforced with microfiber, bentonite and both materials with 1.5, 3.5 and 5.5% w/w solids content. Physicochemical properties were determined using SEM and FTIR, thickness, soluble matter and moisture. The XRD, barrier, mechanical and thermal properties were measured. The films’ micrographs showed agglomerations on the surface. Interactions between its functional groups were found. The solubility increased when the MF concentration increased. The thickness of the films was between 60 and 110 μm. The crystallinity ranged from 23 to 86%. The films with both MF and BN and 3.5% w/w solids had the lowest barrier properties, while the film with 5.5% w/w solids showed the highest mechanical properties, being thermally resistant. Overall, Agave microfibers together with bentonite were able to improve some of the films’ properties, but optimized mixing conditions had to be used to achieve good particle dispersion within the gelatin matrix to improve its final properties. Such materials might have the potential to be used as food packaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.