The influences of nanoparticle size and concentration on the thermodynamic behaviour of epoxy/polystyrene blends are evaluated in the framework of Ginzburg's simple analytical theory. Two approaches have been employed: NPEPO (for particles coated with epoxy groups) and NPFEN (for particles coated with phenyl groups). Using NPEPO, the particles are found to prefer the phase richer in epoxy, whereas the opposite occurs for NPFEN. The particles size significantly influences blend compatibility. When the particle radius Rp is about the same size as the radius of gyration Rg of PS, the compatibility of blends increases with particle concentration, whereas for Rp > Rg, higher particle concentrations do not clearly stabilize the polymeric blends.magnified image
The quartz crystal microbalance (QCM) technique has been applied for monitoring the biorecognition of ArtinM lectins at low horseradish peroxidase glycoprotein (HRP) concentrations, using a simple kinetic model based on Langmuir isotherm in previous work.18 The latter approach was consistent with the data at dilute conditions but it fails to explain the small differences existing in the jArtinM and rArtinM due to ligand binding concentration limit. Here we extend this analysis to differentiate sugar-binding event of recombinant (rArtinM) and native (jArtinM) ArtinM lectins beyond dilute conditions. Equivalently, functionalized quartz crystal microbalance with dissipation monitoring (QCM-D) was used as real-time label-free technique but structural-dependent kinetic features of the interaction were detailed by using combined analysis of mass and dissipation factor variation. The stated kinetic model not only was able to predict the diluted conditions but also allowed to differentiate ArtinM avidities. For instance, it was found that rArtinM avidity is higher than jArtinM avidity whereas their conformational flexibility is lower. Additionally, it was possible to monitor the hydration shell of the binding complex with ArtinM lectins under dynamic conditions. Such information is key in understanding and differentiating protein binding avidity, biological functionality, and kinetics.
A recent theoretical approach based on the coupling of both the Flory-Huggins (FH) and the Association Equilibria thermodynamic (AET) theories was modified and adapted to study the miscibility properties of a multicomponent system formed by two polymers (a proton-donor and a proton-acceptor) and a proton-acceptor solvent, named copolymer(A)/solvent(B)/polymer(C). Compatibility between polymers was mainly attained by hydrogenbonding between the hydroxyl group on the phenol unit of the poly(styrene-co-vinyl phenol) (PSVPh) and the carbonyl group of the biodegradable and environmentally friendly poly(3-hydroxybutyrate) (PHB). However, the selfassociation of PSVPh and specific interactions between the PSVPh and the H-acceptor group (an ether oxygen atom) of the epichlorohydrin (ECH) solvent were also established in a lower extension, which competed with the polymer-polymer association. All the binary specific interactions and their dependence with the system composition as well as with the copolymer content were evaluated and quantified by means of two excess functions of the Gibbs free energy, Δg
A Band Δg A C . Experimental results from fluorescence spectroscopy were consistent with the theoretical simulations derived with the model, which could also be applied and extended to predict the miscibility in solution of any polymer blend with specific interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.