Aim The interconnectedness and biotic interchange among Neotropical biomes are thought to play an important role in driving adaptation and diversification. However, how these processes are in synteny to trait evolution in species of open and xeric areas is poorly studied. Here, we investigate the spatial and temporal dimensions of evolution and candidate traits associated with biome shifts in xeric vegetation, focusing on the family Cactaceae. Location Xeric and open areas of South America. Taxon Genus Cereus Mill. (Cactaceae, Cereeae). Methods We applied biogeographical reconstructions on a time‐calibrated phylogeny inferred from multilocus data (ddRAD‐Seq) using Bayesian analyses on BEAST2, species distribution modelling in Maxent, the reconstruction of biome affinities and niche shift analyses based on abiotic traits (climate and soil) using Mk‐model in BioGeoBEARS, and phenotypic trait‐based analysis in Mesquite. Results The Cerrado domain is the ancestral area of Cereus, with most diversification events occurring in a time of intense orogenesis, climatic changes, and marine regressions within the last 5 Mya. Events of biome transition from the seasonally dry tropical forest (SDTF) were also associated with trait and niche shifts. Main conclusions The diversification of the xerophyte genus Cereus is associated with the climatic and geomorphological instabilities of the Pliocene and Pleistocene epochs. The Cerrado domain states an important region of dispersal for the genus. Some geographical range movements involved biome shifts associated with niche evolution while others were restricted to a simple biogeographical transition without niche change. Particular clades that experienced biome shifts displayed some phenotypic state changes, suggesting a role of biotic traits for environment transition. The results observed in Cereus may be a biogeographical pattern that should be tested with other cactus species, such as Pilosocereus spp., or species of xeric habitats, such as Annonaceae and Vochysiaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.