The local calcium concentration in the active zone of secretion determines the number and kinetics of neurotransmitter quanta released after the arrival of a nerve action potential in chemical synapses. The small size of mammalian neuromuscular junctions does not allow direct measurement of the correlation between calcium influx, the state of endogenous calcium buffers determining the local concentration of calcium and the time course of quanta exocytosis. In this work, we used computer modeling of quanta release kinetics with various levels of calcium influx and in the presence of endogenous calcium buffers with varying mobilities. The results of this modeling revealed the desynchronization of quanta release under low calcium influx in the presence of an endogenous fixed calcium buffer, with a diffusion coefficient much smaller than that of free Ca(2+), and synchronization occurred upon adding a mobile buffer. This corresponds to changes in secretion time course parameters found experimentally (Samigullin et al., Physiol Res 54:129-132, 2005; Bukharaeva et al., J Neurochem 100:939-949, 2007).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.