Echinococcosis is a major emerging zoonosis in central Asia. A cross-sectional study of dogs in four villages in rural Kyrgyzstan was undertaken to investigate the epidemiology and transmission of Echinococcus spp. A total of 466 dogs were examined by arecoline purgation for the presence of Echinococcus granulosus and Echinococcus multilocularis. In addition, a faecal sample from each dog was examined for taeniid eggs. Any taeniid eggs found were investigated using PCR techniques (multiplex and single target PCR) to improve the diagnostic sensitivity by confirming the presence of Echinococcus spp. and to identify E. granulosus strains. A total of 83 (18%) dogs had either E. granulosus adults in purge material and/or E. granulosus eggs in their faeces as confirmed by PCR. Three genotypes of E. granulosus: G1, G4 and the G6/7 complex were shown to be present in these dogs through subsequent sequence analysis. Purge analysis combined with PCR identified 50 dogs that were infected with adult E. multilocularis and/or had E. multilocularis eggs in their faeces (11%). Bayesian techniques were employed to estimate the true prevalence, the diagnostic sensitivity and specificity of the procedures used and the transmission parameters. The sensitivity of arecoline purgation for the detection of echinococcosis in dogs was rather low, with a value of 38% (Credible intervals (CIs) 27-50%) for E. granulosus and 21% (CIs 11-34%) for E. multilocularis. The specificity of arecoline purgation was assumed to be 100%. The sensitivity of coproscopy followed by PCR of the isolated eggs was calculated as 78% (CIs 57-87%) for E. granulosus and 50% (CIs 29-72%) for E. multilocularis with specificity of 93% (CIs 88-96%) and 100% (CIs 97-100), respectively. The 93% specificity of the coprological-PCR for E. granulosus could suggest coprophagia rather than true infections. After adjusting for the sensitivity of the diagnostic procedures, the estimated true prevalence of infection of E. granulosus was 19% (CIs 15-25%) and the infection pressure in the dog population was estimated to be 0.29 infections per year (CIs 0.014-0.75). Logistic regression analysis failed to identify any significant risk factors for infections for E. granulosus. After adjusting for the sensitivity of the test procedures, the estimated true prevalence was 18% (CIs 12-30%). Dogs that were restrained had a significantly lower prevalence of E. multilocularis of 11% (CIs 6-29%) compared with 26% in free-roaming dogs (CIs 17-44%) and
SUMMARYFrom continental to regional scales, the zoonosis alveolar echinococcosis (AE) (caused by Echinococcus multilocularis) forms discrete patches of endemicity within which transmission hotspots of much larger prevalence may occur. Since the late 80s, a number of hotspots have been identified in continental Asia, mostly in China, wherein the ecology of intermediate host communities has been described. This is the case in south Gansu, at the eastern border of the Tibetan plateau, in south Ningxia, in the western Tian Shan of Xinjiang, and in the Alay valley of south Kyrgyzstan. Here we present a comparative natural history and characteristics of transmission ecosystems or ecoscapes. On this basis, regional types of transmission and their ecological characteristics have been proposed in a general framework. Combining climatic, land cover and intermediate host species distribution data, we identified and mapped 4 spatially distinct types of transmission ecosystems typified by the presence of one of the following small mammal ‘flagship’ species: Ellobius tancrei, Ochotona curzoniae, Lasiopodomys brandtii or Eospalax fontanierii. Each transmission ecosystem had its own characteristics which can serve as a reference for further in-depth research in the transmission ecology of E. multilocularis. This approach may be used at fine spatial scales to characterize other poorly known transmission systems of the large Eurasian endemic zone, and help in consideration of surveillance systems and interventions.
SUMMARYEchinococcosis is a re-emerging zoonotic disease in Kyrgyzstan, and the incidence of human infection has increased substantially since the collapse of the Soviet Union in 1991. Domestic dogs are hosts of Echinococcus spp. and play an important role in the transmission of these parasites. The demography, ecology and behaviour of dogs are therefore relevant in studying Echinococcus spp. transmission. Dog demographics, roles of dogs, dog movements and faecal environmental contamination were assessed in four rural communities in the Alay Valley, southern Kyrgyzstan. Arecoline purge data revealed for the first time that E. granulosus, E. canadensis and E. multilocularis were present in domestic dogs in the Alay Valley. Surveys revealed that many households had dogs and that dogs played various roles in the communities, as pets, guard dogs or sheep dogs. Almost all dogs were free to roam, and GPS data revealed that many moved outside their communities, thus being able to scavenge offal and consume rodents. Faecal environmental contamination was high, presenting a significant infection risk to the local communities.
This paper is based on the experience of the authors, with the aim to define the challenges for Echinococcus granulosus (E.g./CE) diagnosis and control for those countries that may now or in the future be contemplating control of hydatid disease. A variety of methods are available for diagnosis in humans but a universal gold standard is lacking. Diagnosis in definitive hosts can avoid necropsy by the use of methods such as coproantigen detection but test performance is variable between populations. A sylvatic cycle adds challenges in some countries and the epidemiology of the parasite in these hosts is poorly understood. Control by solely administering praziquantel to dogs is not effective in developing countries where the disease is endemic. Additional avenues to pursue include the instigation of participatory planning, use of an existing vaccination for intermediate hosts and development of a vaccine and long-acting anthelmitic implants for definitive hosts. Promoting public acceptance of control of the dog population by humane euthanasia and reduced reproduction is also essential.
Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1–G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1–G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6–G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.