Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs.
Enzyme immobilization has been widely used to improve the stability and recyclability of enzymes in industrial processes. In this work, a sortase-mediated and therefore selective covalent immobilization strategy (sortagging) for enzymes on microgels (GelZyms) was investigated. Aqueous microgels were synthesized from poly(N-vinylcaprolactam)/glycidyl methacrylate (PVCL/GMA) and tagged with the sortase A recognition peptide sequence (LPETG) or its nucleophilic counterpart-tag (GGG). General applicability and selective immobilization were confirmed by subsequent sortagging of five different enzymes (Bacillus subtilis lipase A (BSLA), Yersinia mollaretii phytase (Ym-phytase), Escherichia coli copper efflux oxidase (CueO laccase), cellulase A2, and Bacillus megaterium monooxygenase P450 BM3). The latter was performed directly from the cell lysate to ensure cost-effective immobilization. All five immobilized enzymes were catalytically active and could be recycled (e.g., laccase CueO and monooxygenase P450 BM3 F87A; >55% residual activity after six cycles). Application potential was demonstrated by using CueO decorated microgels for bleaching of the synthetic dye indigo carmine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.