Students engagement level detection in online e-learning has become a crucial problem due to the rapid advance of digitalization in education. In this paper, a novel Videos Recorded for Egyptian Students Engagement in E-learning (VRESEE) dataset is introduced for students engagement level detection in online e-learning. This dataset is based on an experiment conducted on a group of Egyptian college students by video recording them during online e-learning sessions. Each recorded video is labeled with a value from 0 to 3 representing the level of engagement of each student during the online session. Moreover, three new hybrid end-to-end deep learning models have been proposed for detecting student's engagement level in an online e-learning video. These models are evaluated using the VRESEE dataset and also using a public Dataset for the Affective States in E-Environment (DAiSEE). The first proposed hybrid model uses EfficientNet B7 together with Temporal Convolution Network (TCN) and achieved an accuracy of 64.67% on DAiSEE and 81.14% on VRESEE. The second model uses a hybrid EfficientNet B7 along with Long Short Term Memory (LSTM) and reached an accuracy of 67.48% on DAiSEE and 93.99% on VRESEE. Finally, the third hybrid model uses EfficientNet B7 along with a Bidirectional LSTM and achieved an accuracy of 66.39% on DAiSEE and 94.47% on VRESEE. The results of the first, second and third proposed models outperform the results of currently existing models by 1.08%, 3.89%, and 2.8% respectively in students engagement level detection.
Arabic text classification methods have emerged as a natural result of the existence of a massive amount of varied textual information (written in Arabic language) on the web. In most text classification processes, feature selection is crucial task since it highly affects the classification accuracy. Generally, two types of features could be used: Statistical based features and semantic and concept features. The main interest of this paper is to specify the most effective semantic and concept features on Arabic text classification process. In this study, two novel features that use lexical, semantic and lexico-semantic relations of Arabic WordNet (AWN) ontology are suggested. The first feature set is List of Pertinent Synsets (LoPS), which is list of synsets that have a specific relation with the original terms. The second feature set is List of Pertinent Words (LoPW), which is list of words that have a specific relation with the original terms. Fifteen different relations (defined in AWN ontology) are used with both proposed features. Naïve Bayes classifier is used to perform the classification process. The experimental results, which are conducted on BBC Arabic dataset, show that using LoPS feature set improves the accuracy of Arabic text classification compared with the well-known Bag-of-Word feature and the recent Bag-of-Concept (synset) features. Also, it was found that LoPW (especially with related-to relation) improves the classification accuracy compared with LoPS, Bagof-Word and Bag-of-Concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.