Scabies is an invasive skin condition caused by Sarcoptes scabiei mites. The present study investigates the antiscabies potential of coconut seed extract (CSE) in rabbits. GC-MS analysis of the seed oil identified 17 known compounds, while CSE phytochemical investigation afforded 4 known ones. The topical application of seed extract improved all signs of infection, and the improvement started 3 days post application. However, in vitro application of the extract caused 99% mortality of mites 1 day post application. Histopathological examination revealed the absence of inflammatory infiltration and hyperkeratosis of the epidermis, compared with ivermectin-treated groups which revealed less improvement. The mRNA gene expression results revealed a suppression of IL-1β, IL-6, IL-10, MMP-9, VEGF, and MCP-1, and an upregulation of I-CAM-1, KGF as well as TIMP-1. The docking analysis emphasized a strong binding of gondoic acid with IL-1β, IL-6, and VEGF with high binding scores of −5.817, −5.291, and −8.362 kcal/mol, respectively, and a high binding affinity of 3″(1‴-O-β-D-glucopyranosyl)-sucrose with GST with −7.24 kcal/mol. Accordingly, and for the first time, our results highlighted the scabicidal potential of coconut seed extract, which opens the gate for an efficient, cost-effective as well as herbal-based alternative for the control of scabies in rabbits.
Some new Bis-pyrazoline hybrids 8–17 with dual EGFR and BRAFV600E inhibitors have been developed. The target compounds were synthesized and tested in vitro against four cancer cell lines. Compounds 12, 15, and 17 demonstrated strong antiproliferative activity with GI50 values of 1.05 µM, 1.50 µM, and 1.20 µM, respectively. Hybrids showed dual inhibition of EGFR and BRAFV600E. Compounds 12, 15, and 17 inhibited EGFR-like erlotinib and exhibited promising anticancer activity. Compound 12 is the most potent inhibitor of cancer cell proliferation and BRAFV600E. Compounds 12 and 17 induced apoptosis by increasing caspase 3, 8, and Bax levels, and resulted in the downregulation of the antiapoptotic Bcl2. The molecular docking studies verified that compounds 12, 15, and 17 have the potential to be dual EGFR/BRAFV600E inhibitors. Additionally, in silico ADMET prediction revealed that most synthesized bis-pyrazoline hybrids have low toxicity and adverse effects. DFT studies for the two most active compounds, 12 and 15, were also carried out. The values of the HOMO and LUMO energies, as well as softness and hardness, were computationally investigated using the DFT method. These findings agreed well with those of the in vitro research and molecular docking study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.