In this research, we investigate the effect of laser texturing on the photo-electrical properties of the polycrystalline silicon solar cell. Laser surface texturing technique was used to achieve the texturing results, which based on the interaction between pulsed CO2 laser (10.6μm) and polycrystalline silicon used for solar cells. Four of photovoltaic solar cells have been textured in two dimensions in different ranges (1 cm x 1cm and 2 cm x 2 cm) with different line spacing. Solar cells with laser-modified surface were characterized by SEM as well as photo-electrically before and after texturing process. The obtained results showed that laser surface texturing with small grooves spacing, results in increasing of the melted silicon surface area which enhance the silicon electrical properties. Furthermore, it increases the optical path length inside the solar cell which enhances light trapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.