Remote Healthcare Monitoring Systems (RHMs) that use ECG signals are very effective tools for the early diagnosis of various heart conditions. However, these systems are still confronted with a problem that reduces their efficiency, such as energy consumption in wearable devices because they are battery-powered and have limited storage. This paper presents a novel algorithm for the compression of ECG signals to reduce energy consumption in RHMs. The proposed algorithm uses discrete Krawtchouk moments as a feature extractor to obtain features from the ECG signal. Then the accelerated Ant Lion Optimizer (AALO) selects the optimum features that achieve the best-reconstructed signal. Our proposed algorithm is extensively validated using two benchmark datasets: MIT-BIH arrhythmia and ECG-ID. The proposed algorithm provides the average values of compression ratio (CR), percent root mean square difference (PRD), signal to noise ratio (SNR), Peak Signal to noise ratio (PSNR), and quality score (QS) are 15.56, 0.69, 44.52, 49.04 and 23.92, respectively. The comparison demonstrates the advantages of the proposed compression algorithm on recent algorithms concerning the mentioned performance metrics. It also tested and compared against other existing algorithms concerning Processing Time, compression speed and computational efficiency. The obtained results show that the proposed algorithm extremely outperforms in terms of (Processing Time = 6.89 s), (compression speed = 4640.19 bps) and (computational efficiency = 2.95). The results also indicate that the proposed compression algorithm reduces energy consumption in a wearable device by decreasing the wake-up time by 3600 ms.INDEX TERMS Remote healthcare monitoring, signal compression, electrocardiogram (ECG), energy efficiency, krawtchouk moments, Ant Lion Optimizer.
Bio-signals are extensively used in diagnosing many diseases in wearable devices. In signal processing, signal reconstruction is one of the essential applications. Discrete orthogonal moments (DOMs) are effective analysis tools for signals that can extract digital information without redundancy. The propagation of numerical errors is a significant challenge for the computation of DOMs at high orders. This problem damages the orthogonality property of these moments, which restricts the ability to recover the signal's distinct and unique components with no redundant information. This paper proposes a stable computation of DOMs based on QR decomposition methods: the Gram–Schmidt, Householder, and Given Rotations methods. It also presents a comparative study on the performance of the types of moments: Tchebichef, Krawtchouk, Charlier, Hahn, and Meixner moments. The proposed algorithm's evaluation is done using the MIT-BIH arrhythmia dataset in terms of mean square error and peak signal to noise ratio. The results demonstrate the superiority of the proposed method in computing DOMs, especially at high moment orders. Moreover, the results indicate that the Householder method outperforms Gram–Schmidt and Given Rotations methods in execution time and reconstruction quality. The comparative results show that Tchebichef, Krawtchouk, and Charlier moments have superior reconstruction quality than Hahn and Meixner moments, and Tchebichef generally has the highest performance in signal reconstruction.
Remote Healthcare Monitoring Systems (RHMs) that employ fetal phonocardiography (fPCG) signals are highly efficient technologies for monitoring continuous and long-term fetal heart rate. Wearable devices used in RHMs still face a challenge that decreases their efficacy in terms of energy consumption because these devices have limited storage and are powered by batteries. This paper proposes an effective fPCG compression algorithm to reduce RHM energy consumption. In the proposed algorithm, the Discrete Orthogonal Charlier Moment (DOCMs) is used to extract features of the signal. The householder orthonormalization method (HOM) is used with the Charlier Moment to overcome the propagation of numerical errors that occur when computing high-order Charlier polynomials. The proposed algorithm’s performance is evaluated in terms of CR, PRD, SNR, PSNR, and QS and provides the average values 18.33, 0.21, 48.85, 68.86, and 90.88, respectively. The results of the comparison demonstrate the proposed compression algorithm’s superiority over other algorithms. It also tested in terms of compression speed and computational efficiency. The results indicate that the proposed algorithm has a high Compression speed (218.672 bps) and high computational efficiency (21.33). Additionally, the results reveal that the proposed algorithm decreases the energy consumption of a wearable device due to the transmission time decreasing for data by 3.68 s.
Bio-signals are extensively used in diagnosing many diseases in wearable devices. In signal processing, signal reconstruction is one of the essential applications. Discrete Orthogonal Moments (DOMs) are effective analysis tools for signals that can extract digital information without redundancy. The propagation of numerical errors is a significant challenge for the computation of DOMs at high orders. This problem damages the orthogonality property of these moments, which restricts the ability to recover the signal's distinct and unique components with no redundant information. This paper proposes a stable computation of DOMs based on QR decomposition methods: the Gram-Schmidt, Householder, and Given Rotations methods. It also presents a comparative study on the performance of the types of moments: Tchebichef, Krawtchouk, Charlier, Hahn, and Meixner moments. The proposed algorithm's evaluation is done using the MIT-BIH arrhythmia dataset in terms of mean square error (MSE ) and peak signal to noise ratio ( PSNR). The results demonstrate the superiority of the proposed method in computing DOMs, especially at high moment orders. Moreover, the results indicate that the Householder method outperforms Gram-Schmidt and Given Rotations methods in execution time and reconstruction quality. The comparative results show that Tchebichef, Krawtchouk, and Charlier moments have superior reconstruction quality than Hahn and Meixner moments, and Tchebichef generally has the highest performance in signal reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.