BackgroundIn patients with acquired heart failure, hypoalbuminaemia is associated with increased risk of death. The prevalence of hypoproteinaemia and hypoalbuminaemia and their relation to outcome in adult patients with congenital heart disease (ACHD) remains, however, unknown.MethodsData on patients with ACHD who underwent blood testing in our centre within the last 14 years were collected. The relation between laboratory, clinical or demographic parameters at baseline and mortality was assessed using Cox proportional hazards regression analysis.ResultsA total of 2886 patients with ACHD were included. Mean age was 33.3 years (23.6–44.7) and 50.1% patients were men. Median plasma albumin concentration was 41.0 g/L (38.0–44.0), whereas hypoalbuminaemia (<35 g/L) was present in 13.9% of patients. The prevalence of hypoalbuminaemia was significantly higher in patients with great complexity ACHD (18.2%) compared with patients with moderate (11.3%) or simple ACHD lesions (12.1%, p<0.001). During a median follow-up of 5.7 years (3.3–9.6), 327 (11.3%) patients died. On univariable Cox regression analysis, hypoalbuminaemia was a strong predictor of outcome (HR 3.37, 95% CI 2.67 to 4.25, p<0.0001). On multivariable Cox regression, after adjusting for age, sodium and creatinine concentration, liver dysfunction, functional class and disease complexity, hypoalbuminaemia remained a significant predictor of death.ConclusionsHypoalbuminaemia is common in patients with ACHD and is associated with a threefold increased risk of risk of death. Hypoalbuminaemia, therefore, should be included in risk-stratification algorithms as it may assist management decisions and timing of interventions in the growing ACHD population.
BackgroundPulse wave velocity (PWV) is a biomarker for the intrinsic stiffness of the aortic wall, and has been shown to be predictive for cardiovascular events. It can be assessed using cardiovascular magnetic resonance (CMR) from the delay between phase-contrast flow waveforms at two or more locations in the aorta, and the distance on CMR images between those locations. This study aimed to investigate the impact of different distance measurement methods on PWV. We present and evaluate an algorithm for automated centreline tracking in 3D images, and compare PWV calculations using distances derived from 3D images to those obtained from a conventional 2D oblique-sagittal image of the aorta.MethodsWe included 35 patients from a twin cohort, and 20 post-coarctation repair patients. Phase-contrast flow was acquired in the ascending, descending and diaphragmatic aorta. A 3D centreline tracking algorithm is presented and evaluated on a subset of 30 subjects, on three CMR sequences: balanced steady-state free precession (SSFP), black-blood double inversion recovery turbo spin echo, and contrast-enhanced CMR angiography. Aortic lengths are subsequently compared between measurements from a 2D oblique-sagittal plane, and a 3D geometry.ResultsThe error in length of automated 3D centreline tracking compared with manual annotations ranged from 2.4 [1.8-4.3] mm (mean [IQR], black-blood) to 6.4 [4.7-8.9] mm (SSFP). The impact on PWV was below 0.5m/s (<5%). Differences between 2D and 3D centreline length were significant for the majority of our experiments (p < 0.05). Individual differences in PWV were larger than 0.5m/s in 15% of all cases (thoracic aorta) and 37% when studying the aortic arch only. Finally, the difference between end-diastolic and end-systolic 2D centreline lengths was statistically significant (p < 0.01), but resulted in small differences in PWV (0.08 [0.04 - 0.10]m/s).ConclusionsAutomatic aortic centreline tracking in three commonly used CMR sequences is possible with good accuracy. The 3D length obtained from such sequences can differ considerably from lengths obtained from a 2D oblique-sagittal plane, depending on aortic curvature, adequate planning of the oblique-sagittal plane, and patient motion between acquisitions. For accurate PWV measurements we recommend using 3D centrelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.