We discuss the consistency of a recently proposed class of theories described by an arbitrary function of the Ricci scalar, the trace of the energy-momentum tensor and the contraction of the Ricci tensor with the energy-momentum tensor. We briefly discuss the limitations of including the energy-momentum tensor in the action, as it is a non fundamental quantity, but a quantity that should be derived from the action. The fact that theories containing non-linear contractions of the Ricci tensor usually leads to the presence of pathologies associated with higher-order equations of motion will be shown to constrain the stability of this class of theories. We provide a general framework and show that the conformal and non-minimal couplings to the matter fields usually lead to higher-order equations of motion. In order to illustrate such limitations we explicitly study the cases of a canonical scalar field, a K-essence field and a massive vector field. Whereas for the scalar field cases it is possible to find healthy theories, for the vector field case the presence of instabilities is unavoidable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.