This research studies the reduction and the estimation of the noise level within a redundant configuration of low-cost (MEMS-type) inertial measurement units (IMUs). Firstly, independent observations between units and sensors are assumed and the theoretical decrease in the system noise level is analyzed in an experiment with four MEMS-IMU triads. Then, more complex scenarios are presented in which the noise level can vary in time and for each sensor. A statistical method employed for studying the volatility of financial markets (GARCH) is adapted and tested for the usage with inertial data. This paper demonstrates experimentally and through simulations the benefit of direct noise estimation in redundant IMU setups.
ABSTRACT:This paper will introduce the goals, concept and results of the project named CLOSE-SEARCH, which stands for 'Accurate and safe EGNOS-SoL Navigation for UAV-based low-cost Search-And-Rescue (SAR) operations'. The main goal is to integrate a medium-size, helicopter-type Unmanned Aerial Vehicle (UAV), a thermal imaging sensor and an EGNOS-based multi-sensor navigation system, including an Autonomous Integrity Monitoring (AIM) capability, to support search operations in difficult-to-access areas and/or night operations. The focus of the paper is three-fold. Firstly, the operational and technical challenges of the proposed approach are discussed, such as ultra-safe multi-sensor navigation system, the use of combined thermal and optical vision (infrared plus visible) for person recognition and Beyond-Line-Of-Sight communications among others. Secondly, the implementation of the integrity concept for UAV platforms is discussed herein through the AIM approach. Based on the potential of the geodetic quality analysis and on the use of the European EGNOS system as a navigation performance starting point, AIM approaches integrity from the precision standpoint; that is, the derivation of Horizontal and Vertical Protection Levels (HPLs, VPLs) from a realistic precision estimation of the position parameters is performed and compared to predefined Alert Limits (ALs). Finally, some results from the project test campaigns are described to report on particular project achievements. Together with actual Search-and-Rescue teams, the system was operated in realistic, user-chosen test scenarios. In this context, and specially focusing on the EGNOS-based UAV navigation, the AIM capability and also the RGB/thermal imaging subsystem, a summary of the results is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.