The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N2) to ammonium (NH4+). We present here the annotated DNA sequence of the alpha-proteobacterium Sinorhizobium meliloti, the symbiont of alfalfa. The tripartite 6.7-megabase (Mb) genome comprises a 3.65-Mb chromosome, and 1.35-Mb pSymA and 1.68-Mb pSymB megaplasmids. Genome sequence analysis indicates that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution. The genome sequence will be useful in understanding the dynamics of interkingdom associations and of life in soil environments.
Analysis of the 1,683,333-nt sequence of the pSymB megaplasmid from the symbiotic N2-fixing bacterium Sinorhizobium meliloti revealed that the replicon has a high gene density with a total of 1,570 protein-coding regions, with few insertion elements and regions duplicated elsewhere in the genome. The only copies of an essential arg-tRNA gene and the minCDE genes are located on pSymB. Almost 20% of the pSymB sequence carries genes encoding solute uptake systems, most of which were of the ATP-binding cassette family. Many previously unsuspected genes involved in polysaccharide biosynthesis were identified and these, together with the two known distinct exopolysaccharide synthesis gene clusters, show that 14% of the pSymB sequence is dedicated to polysaccharide synthesis. Other recognizable gene clusters include many involved in catabolic activities such as protocatechuate utilization and phosphonate degradation. The functions of these genes are consistent with the notion that pSymB plays a major role in the saprophytic competence of the bacteria in the soil environment.A mong the bacteria, the ␣-proteobacteria appear unusual because of the presence of multiple replicons within the same bacterial strain (1). In the case of Agrobacterium tumefaciens, the causative agent of crown gall disease, the genome contains both a linear and a circular chromosome (2). Many (but not all) of the bacteria that form N 2 -fixing root nodules on leguminous plants are characterized by the presence of multiple plasmids greater than 400 kb in size. In the case of the N 2 -fixing symbiont Sinorhizobium meliloti, there are three replicons, a 3,654-kb circular chromosome (3, 4) and two megaplasmids 1,354 and 1,683 kb in size (5-7). The smaller of the megaplasmids, variously called pSymA, pNod-Nif, or pRmeSU47a, is known to carry many of the genes involved in root nodule formation (nod) and nitrogen fixation (nif ) (8, 9).The 1,683-kb megaplasmid, referred to as pSymB, pExo, or pRmeSU47b, is known to carry various gene clusters involved in exopolysaccharide (EPS) synthesis, C 4 -dicarboxylate transport, and lactose metabolism (10-12). Early studies focused on mutations that abolished synthesis of the succinoglycan EPS, EPS I, because these mutations resulted in a loss of the ability to form normal N 2 -fixing root nodules. This symbiotic defect was rescued by second-site mutations that increased the synthesis of a second galactoglucan EPS (EPS II), whose biosynthetic genes were also located on the pSymB megaplasmid (13,14). Other genes located on pSymB that are required for the formation of N 2 -fixing root nodules include the C 4 -dicarboxylate (dctA) and phosphate transport (phoCDET) genes and the bacA gene (15-18). The presence of large plasmids in bacteria that form associations with plants was described over 20 years ago (19). However, with the exception of the symbiotic genes in relatively small regions of these plasmids, the broader biological role of the plasmids in the biology of the organism has remained obscure. We constructed a ...
The glyoxylate cycle is an anaplerotic pathway of the tricarboxylic acid (TCA) cycle that allows growth on C 2 compounds by bypassing the CO 2 -generating steps of the TCA cycle. The unique enzymes of this route are isocitrate lyase (ICL) and malate synthase (MS). ICL cleaves isocitrate to glyoxylate and succinate, and MS converts glyoxylate and acetyl-CoA to malate. The end products of the bypass can be used for gluconeogenesis and other biosynthetic processes. The glyoxylate cycle occurs in Eukarya, Bacteria and Archaea. Recent studies of ICL-and MS-deficient strains as well as proteomic and transcriptional analyses show that these enzymes are often important in human, animal and plant pathogenesis. These studies have extended our understanding of the metabolic pathways essential for the survival of pathogens inside the host and provide a more complete picture of the physiology of pathogenic micro-organisms. Hopefully, the recent knowledge generated about the role of the glyoxylate cycle in virulence can be used for the development of new vaccines, or specific inhibitors to combat bacterial and fungal diseases.
The genus Burkholderia includes pathogens of plants and animals and some human opportunistic pathogens, such as the Burkholderia cepacia complex (Bcc), but most species are nonpathogenic, plant associated, and rhizospheric or endophytic. Since rhizobacteria expressing ACC (1-aminocyclopropane-1-carboxylate) deaminase may enhance plant growth by lowering plant ethylene levels, in this work we investigated the presence of ACC deaminase activity and the acdS gene in 45 strains, most of which are plant associated, representing 20 well-known Burkholderia species. The results demonstrated that ACC deaminase activity is a widespread feature in the genus Burkholderia, since 18 species exhibited ACC deaminase activities in the range from 2 to 15 mol of ␣-ketobutyrate/h/mg protein, which suggests that these species may be able to modulate ethylene levels and enhance plant growth. In these 18 Burkholderia species the acdS gene sequences were highly conserved (76 to 99% identity). Phylogenetic analysis of acdS gene sequences in Burkholderia showed tight clustering of the Bcc species, which were clearly distinct from diazotrophic plant-associated Burkholderia species. In addition, an acdS knockout mutant of the N 2 -fixing bacterium Burkholderia unamae MTl-641 T and a transcriptional acdSp-gusA fusion constructed in this strain showed that ACC deaminase could play an important role in promotion of the growth of tomato plants. The widespread ACC deaminase activity in Burkholderia species and the common association of these species with plants suggest that this genus could be a major contributor to plant growth under natural conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.