Electrocardiographic imaging (ECGI) can characterise cardiac pathologies such as atrial fibrillation (AF)through specific markers based on frequency or phase analysis. In this study, the effect of the geometry of patients' torso and atria in the ECGI resolution is studied.A realistic 3D atrial geometry was located on 30 patient torsos and ECGI signals were calculated for 30 different AF simulations in each torso. Dominant frequency (DF) and reentrant activity analysis were calculated for each scenario. Anatomical and geometrical measurements of each torso (30-80% of variability between patients) and atria were calculated and compared with the errors in the ECGI estimation versus the departing EGM maps.Results show evidences that big chest dimensions worsen the non-invasive calculation of AF markers (p<0.05). Also, higher number of visible electrodes from each atrial region improves ECGI characterization measured as lower DF deviations (0.64±0.26 Hz vs 0.72±0.27 Hz, p<0.05) and higher reentrant activity coincidence (10.1±12.2% vs 3.4±3.4%, p<0.05).Torso and atrial geometry affect the quality of the noninvasive reconstruction of AF markers such as DF or reentrant activity. Knowing the geometrical parameters that worsen non-invasive AF maps may help to measure each detected AF driver reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.