This chapter highlights the paradox between the Amazon’s extraordinary socio-biodiversity and its distance from the scientific, technological, and market frontier of the contemporary bioeconomy. It discusses the current socioeconomic structures available in the region, as well as challenges and pathways for a transition to a socially-fair and sustainable bioeconomy.
For the last two decades, the Amazon development debate has been torn between attempts to reconcile two rather opposing views of land use: on one hand, a vision of setting aside large tracts of the Amazon forests for conservation purposes (referred hereafter to as The First Way) and, on the other hand, seeking a 'sustainable' resource-intensive development, mostly through agriculture/livestock, energy and mining (referred hereafter to as The Second Way). The decrease of Brazilian Amazon deforestation from 2005 to 2014 (about 75% decline) opens a window of opportunity to conceive a novel sustainable development paradigm: The Amazonia Third Way initiative (A3W). It can represent a new opportunity emerging to protect the Amazon ecosystems and the indigenous and traditional peoples who are their custodians and at the same time develop a vibrant, socially inclusive biodiversity-driven 'green economy' in the Amazon by harnessing Nature's value through the physical, digital and biological technologies of the 4th Industrial Revolution (4IR). 4IR technologies are increasingly harnessing these assets across many industries from pharmaceutical to energy, food, cosmetics, materials and mobility, and making profits. A3W addresses ways to channel to the Amazon the benefits of the 4IR for the creation of bio-industries and local development as it protects the forests.
The Amazon Basin is at the center of an intensifying discourse about deforestation, land-use, and global change. To date, climate research in the Basin has overwhelmingly focused on the cycling and storage of carbon (C) and its implications for global climate. Missing, however, is a more comprehensive consideration of other significant biophysical climate feedbacks [i.e., CH4, N2O, black carbon, biogenic volatile organic compounds (BVOCs), aerosols, evapotranspiration, and albedo] and their dynamic responses to both localized (fire, land-use change, infrastructure development, and storms) and global (warming, drying, and some related to El Niño or to warming in the tropical Atlantic) changes. Here, we synthesize the current understanding of (1) sources and fluxes of all major forcing agents, (2) the demonstrated or expected impact of global and local changes on each agent, and (3) the nature, extent, and drivers of anthropogenic change in the Basin. We highlight the large uncertainty in flux magnitude and responses, and their corresponding direct and indirect effects on the regional and global climate system. Despite uncertainty in their responses to change, we conclude that current warming from non-CO2 agents (especially CH4 and N2O) in the Amazon Basin largely offsets—and most likely exceeds—the climate service provided by atmospheric CO2 uptake. We also find that the majority of anthropogenic impacts act to increase the radiative forcing potential of the Basin. Given the large contribution of less-recognized agents (e.g., Amazonian trees alone emit ~3.5% of all global CH4), a continuing focus on a single metric (i.e., C uptake and storage) is incompatible with genuine efforts to understand and manage the biogeochemistry of climate in a rapidly changing Amazon Basin.
Under the Amazon Third Way paradigm and its implementation strategy Amazon 4.0 the Amazon Creative Labs (ACL) were conceived, as a tool for training and for testing proposed concepts. Amazon 4.0 is an attempt to show that it is possible to achieve a stage of high human development combined with valuing of tropical forest through knowledge. This study demonstrates how to add value to value chains of the immense Amazon biodiversity and how to enable Amazonian populations to master bio-industrialization technologies of forest assets. The following example deals with the potential to develop bio-industries in the value chain of two forest products with high potential: cupuaçu and cocoa through the development of the so-called ACL. This will serve as an important experiment to guide several proposals being elaborated by the Scientific Panel for the Amazon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.