The Content-Based Image Retrieval (CBIR) techniques comprise methodologies intended to retrieve self-content descriptors over the image data set being studied according to the type of the image. The main purpose of CBIR consists in classifying images avoiding the use of manual labels related to understanding of the image by the human being vision. In this work we provide a new CBIR procedure which works with local texture analysis, and which is developed in a non supervised fashion, clustering the local achieved descriptors and classifying them with the use of a K-means algorithm supported by the genetic algorithm. This method has been deployed in LabVIEW software, programming each part of the procedure in order to implement it in hardware. The results are very promising, reaching up to 90% of recall for natural scene classification.
The technology of power electronic systems has diversified into industrial, commercial, and residential areas. Developing a strategy to improve the performance of the electrical energy of an electric vehicle (EV) requires an analysis of the model that describes it. EVs are complex mechatronic systems described by nonlinear models and, therefore, its study is not an easy task. It can improve the performance of a battery bank by creating new batteries that allow for greater storage or by developing a management energy system. This article shows the development of a power supply management system based on fuzzy logic for an electric vehicle, in order to minimize the total energy consumption and optimize the battery bank. The experimental result is shown using the fuzzy controller under standard operating conditions. An increase in battery performance and overall performance of energy consumption is shown. Speed signals acquired show improvements in some dynamic, such as overshoot, settling time, and steady-state error parameters. It is shown that this fuzzy controller increases the overall energy efficiency of the vehicle.
In the field of data science and data mining, the problem associated with clustering features and determining its optimum number is still under research consideration. This paper presents a new 2D clustering algorithm based on a mathematical topological theory that uses a pseudometric space and takes into account the local and global topological properties of the data to be clustered. Taking into account cluster symmetry property, from a metric and mathematical-topological point of view, the analysis was carried out only in the positive region, reducing the number of calculations in the clustering process. The new clustering theory is inspired by the thermodynamics principle of energy. Thus, both topologies are recursively taken into account. The proposed model is based on the interaction of particles defined through measuring homogeneous-energy criterion. Based on the energy concept, both general and local topologies are taken into account for clustering. The effect of the integration of a new element into the cluster on homogeneous-energy criterion is analyzed. If the new element does not alter the homogeneous-energy of a group, then it is added; otherwise, a new cluster is created. The mathematical-topological theory and the results of its application on public benchmark datasets are presented.
The clustering problem has been extensively studied over the last 50 years; however, it still has the attention of researchers. This paper presents a topological basis of a pseudometric-based clustering model which takes into account the local and global topological properties of the data to be clustered, as per the definition of homogeneity measurement. The proposed approach takes into account the homogeneity effect produced when a new particle is added to a group. The additional element can be accumulated in the group if its local homogeneity is not altered and, therefore, it is not necessary to carry out tests in another group. A new group needs to be generated if the threshold of the local homogeneity of the group exceeds. Theoretical results, their implementation, and their application to the problem of Content Based Image Retrieval (CBIR) are presented. The tests were performed using three image databases widely used in the literature, which are “Vogel and Shiele,” “Oliva and Torralba,” and “L. Fei- Fei, R. Fergus and P. Perona.” The results are presented and compared with the most competitive methods available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.