Graded structures and nanocellular polymers are two examples of advanced cellular morphologies. In this work, a methodology to obtain low‐density graded nanocellular polymers based on poly(methyl methacrylate) (PMMA)/thermoplastic polyurethane (TPU) blends produced by gas dissolution foaming is reported. A systematic study of the effect of the processing condition is presented. Results show that the melt‐blending results in a solid nanostructured material formed by nanometric TPU domains. The PMMA/TPU foamed samples show a gradient cellular structure, with a homogeneous nanocellular core. In the core, the TPU domains act as nucleating sites, enhancing nucleation compared to pure PMMA and allowing the change from a microcellular to a nanocellular structure. Nonetheless, the outer region shows a gradient of cell sizes from nano‐ to micron‐sized cells. This gradient structure is attributed to a non‐constant pressure profile in the samples due to gas desorption before foaming. The nucleation in the PMMA/TPU increases as the saturation pressure increases. Regarding the effect of the foaming conditions, it is proved that it is necessary to have a fine control to avoid degeneration of the cellular materials. Graded nanocellular polymers with relative densities of 0.16–0.30 and cell sizes ranging 310–480 nm (in the nanocellular core) are obtained.
Nowadays, developing advanced, highly insulating materials for minimizing heat losses in buildings is of utmost relevance. Thus, there is a constant research activity focused on developing new and enhanced solutions for thermal insulation. However, characterizing the behavior of new thermal insulation materials, usually produced at lab-scale with small dimensions, by a steady-state approach is a challenge. The reason is that commercial heat flow meters require large samples (hundred on mm side) to provide accurate results of thermal conductivity because they are based on international standards. In this work, a new methodology to measure the thermal conductivity of small prototypes of thermal insulating materials (as low as 50 × 50 mm2) is developed by using an external heat flow sensor placed into a standard heat flow meter apparatus. Four different thermal insulators were used to validate the developed methodology by performing measurements in the heat flow meter with and without the external sensor. From these results, a calibration curve that relates both methods was calculated. Furthermore, the effect of the sample size was studied to explore the limits of the technique. Results show that the self-developed method is an accurate procedure to determine the thermal conductivity of samples with small dimensions via a steady-state condition.
Graphical abstract
In this work, the effects of thermoplastic polyurethane (TPU) chemistry and concentration on the cellular structure of nanocellular polymers based on poly(methyl-methacrylate) (PMMA) are presented. Three grades of TPU with different fractions of hard segments (HS) (60%, 70%, and 80%) have been synthesized by the prepolymer method. Nanocellular polymers based on PMMA have been produced by gas dissolution foaming using TPU as a nucleating agent in different contents (0.5 wt%, 2 wt%, and 5 wt%). TPU characterization shows that as the content of HS increases, the density, hardness, and molecular weight of the TPU are higher. PMMA/TPU cellular materials show a gradient cell size distribution from the edge of the sample towards the nanocellular core. In the core region, the addition of TPU has a strong nucleating effect in PMMA. Core structure depends on the HS content and the TPU content. As the HS or TPU content increases, the cell nucleation density increases, and the cell size is reduced. Then, the use of TPUs with different characteristics allows controlling the cellular structure. Nanocellular polymers have been obtained with a core relative density between 0.15 and 0.20 and cell sizes between 220 and 640 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.