How do we analyze sentiments over a set of opinionated Twitter messages? This issue has been widely studied in recent years, with a prominent approach being based on the application of classification techniques. Basically, messages are classified according to the implicit attitude of the writer with respect to a query term. A major concern, however, is that Twitter (and other media channels) follows the data stream model, and thus the classifier must operate with limited resources, including labeled data for training classification models. This imposes serious challenges for current classification techniques, since they need to be constantly fed with fresh training messages, in order to track sentiment drift and to provide up-to-date sentiment analysis.We propose solutions to this problem. The heart of our approach is a training augmentation procedure which takes as input a small training seed, and then it automatically incorporates new relevant messages to the training data. Classification models are produced on-the-fly using association rules, which are kept up-to-date in an incremental fashion, so that at any given time the model properly reflects the sentiments in the event being analyzed. In order to track sentiment drift, training messages are projected on a demanddriven basis, according to the content of the message being classified. Projecting the training data offers a series of advantages, including the ability to quickly detect trending information emerging in the stream. We performed the analysis of major events in 2010, and we show that the prediction performance remains about the same, or even increases, as the stream passes and new training messages are acquired. This result holds for different languages, even in cases where sentiment distribution changes over time, or in cases where the initial training seed is rather small. We derive lower-bounds for prediction performance, and we show that our approach is extremely effective under diverse learning scenarios, providing gains that range from 7% to 58%.
This work aimed to characterize how online social networks support the sociability among elderly members of Brazil and to discuss the impact of this proposed sociability in the social interaction of these users. To achieve this goal, we conducted a case study on Facebook, which aimed to evaluate the sociability on this online social network in the perspectives of experts in HCI and elderly users view point. The results showed that the interface and interaction model of Facebook reflects on the experience of use and sociability of this members' group. As contributions, we present insights about the design and evaluation of social software more focused on the sociability of elderly users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.