E-learning poses a challenge in a pedagogical perspective such as finding ways on how to motivate the students to learn in spite of the absence of a human instructor. Many researchers in the field have proposed and implemented various mechanisms to improve the learning process such as individualization and personalization. The main objectives is to maximize learning by dynamically selecting the closest teaching operation in order to achieve the learning goals. In this paper, a revolutionary technique has been proposed and implemented to perform individualization and personalization using reversed roulette wheel selection algorithm that runs at O(n). The technique is simpler to implement and is algorithmically less expensive compared to other revolutionary algorithms since it collects the dynamic real time performance such as examinations, reviews and study matrices. Results show that the implemented system is capable of recommending new learning sequences that lessens time of study based on their prior knowledge and real performance matrix.
An e-learning website is not sufficient to fully attain the results of online education. There also is a need to align the educational objectives into the design of the assessment to improve and develop cognition, critical thinking and problem-solving skills. Previous studies have explored the potentials of the assessment models but few ventured into their implementation. Others only proposed and introduced conceptual frameworks. The implementation of these proposals, however, revealed that the question type in the assessment phase neglected to align their questionnaire formats into a cognitive schema. At present, the standard multiple-choice question is the most frequently used of the question type of e-learning assessments. However, if this type is the only format adopted by e-learning developers, then the potentially rich and embedded assessment of the computer platform will be given up. This paper focuses on the design of assessment questions, which is created and guided by the hierarchical Bloom cognitive taxonomy and by utilizing rich media formats. Results conducted for eighteen weeks show a dramatic increase in the academic performance of the students. Likewise, digital transcripts converted from the collected perceptions after training undergoes sentiment analysis have correlated with the student improved academic throughput.
Implementation processes of systems in organizations follow different strategies and one of these strategies is to understand the uncertainties associated with the integration of the new system into an existing system environment so as to limit any challenges that may arise during the system implementation. Systems are implemented to address specific organizational needs, that is, activities the organization engages in. This paper explores organization information processing theory (OIPT) and activity theory in enterprise resource planning (ERP) systems implementation. A framework for the ERP implementation has been developed from a conceptual model on the interaction of organizational culture and structure. The modified model incorporates the activity theory and the OIPT and provides a formal way of bringing on board various interplaying variables in the system implementation process, more so for ERP systems.
BackgroundThe disease outbreak management operations of most countries (notably Kenya) present numerous novel ideas of how to best make use of notifiable disease data to effect proactive interventions. Notifiable disease data is reported, aggregated and variously consumed. Over the years, there has been a deluge of notifiable disease data and the challenge for notifiable disease data management entities has been how to objectively and dynamically aggregate such data in a manner such as to enable the efficient consumption to inform relevant mitigation measures. Various models have been explored, tried and tested with varying results; some purely mathematical and statistical, others quasi-mathematical cum software model-driven.MethodsOne of the tools that has been explored is Artificial Intelligence (AI). AI is a technique that enables computers to intelligently perform and mimic actions and tasks usually reserved for human experts. AI presents a great opportunity for redefining how the data is more meaningfully processed and packaged. This research explores AI’s Machine Learning (ML) theory as a differentiator in the crunching of notifiable disease data and adding perspective. An algorithm has been designed to test different notifiable disease outbreak data cases, a shift to managing disease outbreaks via the symptoms they generally manifest. Each notifiable disease is broken down into a set of symptoms, dubbed symptom burden variables, and consequently categorized into eight clusters: Bodily, Gastro-Intestinal, Muscular, Nasal, Pain, Respiratory, Skin, and finally, Other Symptom Clusters. ML’s decision tree theory has been utilized in the determination of the entropies and information gains of each symptom cluster based on select test data sets.ResultsOnce the entropies and information gains have been determined, the information gain variables are then ranked in descending order; from the variables with the highest information gains to those with the lowest, thereby giving a clear-cut criteria of how the variables are ordered. The ranked variables are then utilized in the construction of a binary decision tree, which graphically and structurally represents the variables. Should any variables have a tie in the information gain rankings, such are given equal importance in the construction of the binary decision-tree. From the presented data, the computed information gains are ordered as; Gastro-Intestinal, Bodily, Pain, Skin, Respiratory, Others. Muscular, and finally Nasal Symptoms respectively. The corresponding binary decision tree is then constructed.ConclusionsThe algorithm successfully singles out the disease burden variable(s) that are most critical as the point of diagnostic focus to enable the relevant authorities take the necessary, informed interventions. This algorithm provides a good basis for a country’s localized diagnostic activities driven by data from the reported notifiable disease cases. The algorithm presents a dynamic mechanism that can be used to analyze and aggregate any notifiable disease data set, meaning that the algorithm is not fixated or locked on any particular data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.