Yellow rust and heat stress adversatively impact the growth and production of bread wheat in particular under rising adverse environmental conditions. Stability of grain yield is a pivotal purpose of plant breeders to improve wheat production and ensure global food security especially under abrupt climate change. The objective of this study was to assess the performance and stability of diverse bread wheat genotypes for yellow rust resistance, heat stress, and yield traits. The studied genotypes were evaluated in two different locations under two sowing dates (timely and late sowing) during two growing seasons. The obtained results displayed significant differences among the tested locations, sowing dates, and genotypes for most measured traits. The yellow rust measurements evaluated under the field conditions including final rust severity (FRS), the average coefficient of infection (ACI), and area under disease progress curve (AUDPC) revealed that Giza-171, Misr-1, Gemmeiza-12, Shandweel-1, Sids-13, Line-1, Line-2, and Line-55 had better resistance. Based on heat sensitivity measurements, Line-1 and Line-2 followed by Line-35, Shandweel-1 and Line-55 were classified as more tolerant to heat stress compared with the remaining genotypes. The genotypes Line-55, Gemmeiza-12, Giza-171, Line-1, Line-2, and Misr-1 were able to maintain acceptable agronomic performance under timely and late sowing dates in all evaluated environments. Different statistical procedures were employed to explore the adaptability and stability of tested genotypes i.e., joint regression, stratified ranking, Wricke's Ecovalence values, cultivar superiority, additive main effects, and multiplicative interaction (AMMI), AMMI stability value, and genotype plus genotype-by-environment interaction (GGE). The applied stability parameters were quite similar for describing the stability of the evaluated wheat genotypes. The results indicated that Gemmeiza-12, Giza-171, Sids-12, Sids-13, Misr-1 Shandweel-1, Line-1, Line-2, and Line-55 were desirable and stable. The heatmap and hierarchical clustering were exploited for dividing the evaluated bread wheat genotypes into different clusters based on yellow rust resistance measurements, heat tolerance indices, and agronomic performance. Line-1 and Line-2 had the best performance for all rust resistance, heat tolerance, and agronomic performance followed by Giza-171, Line-55, Line-35, Gemmeiza-12, Shandweel-1, Misr-1, and Sids-13. In conclusion, our findings provide evidence of utilizing promising genotypes in rust resistance, heat tolerance, and agronomic performance in breeding programs for improving wheat grain yield stability mainly under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.