Abstract-3GPP LTE-Advanced has started a new study item to investigate Heterogeneous Network (HetNet) deployments as a cost effective way to deal with the unrelenting traffic demand. HetNets consist of a mix of macrocells, remote radio heads, and low-power nodes such as picocells, femtocells, and relays. Leveraging network topology, increasing the proximity between the access network and the end-users, has the potential to provide the next significant performance leap in wireless networks, improving spatial spectrum reuse and enhancing indoor coverage. Nevertheless, deployment of a large number of small cells overlaying the macrocells is not without new technical challenges. In this article, we present the concept of heterogeneous networks and also describe the major technical challenges associated with such network architecture. We focus in particular on the standardization activities within the 3GPP related to enhanced inter-cell interference coordination.
The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: RAN, core network, and caching. We also present a general overview of 5G cellular networks composed of software defined network (SDN), network function virtualization (NFV), caching, and mobile edge computing (MEC) capable of meeting latency and other 5G requirements.
In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.