Cerium substituted yttrium iron garnet (Ce 0.2 Y 2.8 Fe 5 O 12 ; Ce-YIG) nanoparticles were produced via the sol-gel method from solutions of Ce-, Y-and Fe-based precursors, a solvent and a chelating agent. The solutions were dried at 200°C and heat treated at temperatures between 800°C and 1400°C for 3 h in air. The effects of pH and annealing temperature on the structure, phase formation, magnetic properties and crystallite size were investigated. A cubic YIG phase was obtained for the sample annealed at 1400°C. The presented results showed that the pH value of the starting solution affects the crystal size and consequently, the saturation magnetization.
In this study, a simple, adjustable, bidirectional tilt sensor was designed using a pair of linear Hall effect sensors and magnets. Theoretical analysis and experimental results of the sensor system were presented. The working principle of the designed sensor is based on sensing the magnetic field of a mobile magnet which displaces with respect to the tilt angle. Two magnet sets were placed at the two ends of the system to apply repulsive restoring forces on the mobile magnet. The mobile magnet was coated with a light hydrocarbon based ferrofluid as a lubricant to reduce friction. Fixed Hall effect sensors were placed face to face at the two sides of the mobile magnet to monitor the magnetic field of the mobile magnet. It was shown that both experimentally and theoretically, it is possible to measure the approximate tilt angle linearly and quadratically by calculating the sum and difference of the Hall sensor voltages for the relatively small movements of the mobile magnet. Moreover, the system was also examined for the different sets of side magnets. For three different side magnet configurations, approximately 0.7, 1.1 and 1.68 V/rad sensitivity values were observed in the linear range.
A design of experiment (DoE) study is presented based on an investigation of the influences of the chosen geometric parameters of an Inverted Square Split Ring Resonator on its resonance frequency. A statistical software was used to determine DoE steps and the values of chosen geometrical parameters for the experiments. The determined experiments were carried out by making simulations with electromagnetic design software. The resonator simulation outputs were analyzed by using normality tests and tools of the statistical software. By using these analyses, mainly a 2-level full factorial DoE approach, the effects of the geometrical parameters (input factors), and their interactions on the resonance frequency (response factor) were presented. In the light of our findings, this study proposes a promising path for microwave studies with several advantages such as being able to understand the dynamics of an optimized RF resonator device system, designing these kinds of devices with a few experiments, and increasing the time efficiency via reducing the number of attempts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.