Energy being one of the largest operating expenses in most organizations especially manufacturing and processing industries leading to considerable scope for energy conservation and hence cost. Information on energy utilization and conservation pattern were obtained based on time taken, number of person involved and sources of energy using standard energy equations. A total of 445.40 ± 17.32MJkg −1 where thermal energy (420MJ ≈ 94%) and manual energy (25.40MJ ≈ 6%) were the only forms of energy used during production process. Conservation approach I resulted in mean energy of 72.08 ± 1.73MJkg −1 where electrical energy, manual energy and thermal energy accounted for 1.75MJ (3%) 7.34MJ (10%) and 62.99MJ (87%) respectively. Conservation approach II reduced the energy further to 57.24 ± 1.73MJkg −1 as the operation was thermal energy dependent, followed by manual and electrical energy with energy values of 48.13, 7.33 and 1.78MJ equivalent to 84.10%, 12.80% and 3.10% accordingly. Conclusively, traditional method of processing utilized highest energy (445.40MJ) followed by conservation approach I (72.08MJ) and conservation approach II (57.24MJ) was least in energy demand. Conservation approach II permits energy conservation to be 87% as compared with traditional method.
Energy being one of the largest operating expenses in most organizations especially manufacturing and processing industries leading to considerable scope for energy conservation and hence cost. Information on energy utilization and conservation pattern were obtained based on time taken, number of person involved and sources of energy using standard energy equations. A total of 445.40 ± 17.32MJkg-1 where thermal energy (420MJ ≈ 94%) and manual energy (25.40MJ ≈ 6%) were the only forms of energy used during production process. Conservation approach I resulted in mean energy of 72.08 ± 1.73MJkg-1 where electrical energy, manual energy and thermal energy accounted for 1.75MJ (3%) 7.34MJ (10%) and 62.99MJ (87%) respectively. Conservation approach II reduced the energy further to 57.24 ± 1.73MJkg-1 as the operation was thermal energy dependent, followed by manual and electrical energy with energy values of 48.13, 7.33 and 1.78MJ equivalent to 84.10%, 12.80% and 3.10% accordingly. Conclusively, traditional method of processing utilized highest energy (445.40MJ) followed by conservation approach I (72.08MJ) and conservation approach II (57.24MJ) was least in energy demand. Conservation approach II permits energy conservation to be 87% as compared with traditional method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.