The nature of carbon quantum dot (CD) luminescence is still broadly investigated based on different CD synthesis processes. This study aims at investigating the effect of microwave power on optical characteristics of CDs using microwave radiation techniques. CDs are synthesized with citric acid as a source of carbon and urea as a passivation agent. CDs have been successfully synthesized, and an increase in the CD burn-off percentage was observed with an increase in the microwave power. The TEM test results show that the dimensions of the CDs resulted are in the range of 3.4–9.5 nm with an average size of 6 nm at 450 W. The results of the FTIR functional group structural analysis show that a CD has N—H and O—H stretching bonds. According to the results of UV–Vis analysis, the CDs have absorption peaks at 335 nm and 407 nm, which indicates a π → π* electronic transition from the C=C bond and an n → π* transition from the C=O bond. Using the Tauc-plot method, the CD energy bandgap values were found to be 2.47 eV, 2.51 eV, 2.51 eV, 2.52 eV, and 2.53 eV at CD 300, CD 450, CD 600, CD 850, and CD 1000, respectively. The optical multichannel analyzer test results show that the peak emission waves produced by CDs are 536 nm and 532 nm with the strongest bright green light at CD 1000. Time-resolved photoluminescence testing shows that the CD decay time generally ranges from 5 ns. Overall, an increase in the microwave power causes an increase in the percentage of burn-off, energy bandgap, absorption intensity, and CD emission intensity.
Carbon dots made of various sources have shown unique and excellent optical properties for many potential applications, including light emitting devices. The luminescence origin of carbon dots is crucial in colour conversion emitting device applications. In this work, an intensive study on surface state effects of caramelised sugar carbon dots for colour conversion applications was done. Using caramelised carbon dots synthesised by microwave-assisted technique, we studied optical properties of carbon dots using photoluminescence, time resolved photoluminescence, Fourier-transform infrared spectroscopies, absorbance spectroscopy and Raman spectroscopy. We found that different concentrations of caramelised sugar dissolved in water caused absorbance and emission peak shift of carbon dots. However, life-time, crystal structure and functional groups of carbon dots were not significantly affected by carbon dot concentration. We have utilised this shifting luminescence effect in colour conversion light emitting devices using blue and green light emitting diodes. Caramelised sugar carbon dots, which were placed on top of light emitting diodes, were able to generate new colours. This work is useful for developing advanced lighting devices using carbon dots.
Two-dimensional transition metal dichalcogenides such as molybdenum disulfide (MoS2) have attracted great attention due to their unique optical, electrical and chemical properties. MoS2 quantum dots (QDs) exhibit strong quantum confinement, high surface area and notable active edge sites compared to their bulk. In this work, MoS2 QDs were attached on the surface of ZnO nanorods (NRs) grown on interdigitated ITO substrates and then used as photodetector. MoS2 QDs were synthesized by a new ultrafast way pulsed laser ablation (PLA) in liquid method and then spincoated on the surface of ZnO NRs. The pristine ZnO and ZnO/MoS2 QDs photodetector were investigated under UV and visible light (325 nm, 505 nm and 635 nm) with the bias voltage -5 V to 5 V. The results show that the decoration of ZnO NRs by MoS2 QDs could enhance the sensitivity, responsivity and detectivity under UV irradiation. This may due to the decrease of dark current as the result of passivation of surface defects of ZnO NRs by MoS2 QDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.