The present study investigated the isolation and identification of airborne fungi from three different urban stations located in Eskisehir (Turkey). Air samples were taken by exposing a Petri dish with Rose-Bengal streptomycin agar medium for 15 min and after incubation the number of growing colonies was counted. The sampling procedure for fungi was performed 35 times at the research stations weekly between March and November 2001. A total of 2518 fungal and 465 actinomycetes colonies were counted on 420 Petri plates over a nine-month period. In total, some 20 mould species belonging to 12 genera were isolated. Alternaria alternata, Cladosporium cladosporioides and Scopulariopsis brevicaulis were the most abundant species in the study area (13.66, 5.80 and 5.50% of the total, respectively). Relationships between fungal spore numbers, aerosol air pollutants (that is the particulate matter in the air) and sulphur dioxide together with the meteorological conditions were examined using statistical analysis. Number of fungi and actinomycetes were tested by multivariate analysis (MANOVA) according to the areas and months. Fungal numbers were nonsignificant according to the areas and months ( p > 0.05), but the number of actinomycetes recorded was significant ( p < 0.01).
Alternaria and Cladosporium, known as the most allergenic spores were first collected by means of Durham gravimetric sampler from Eskisehir atmosphere from January 1, 2000 to December 31, 2001. The daily, monthly and annual variations in spores/cm(2) of Cladosporium and Alternaria were recorded. During this period, a total of 10.231 spores belonging to Cladosporium and Alternaria genera were recorded. Of these spores, 5,103 were identified in 2000 and 5,128 in 2001. While 63.09% of the total spores were those of Cladosporium, 36.91% were of Alternaria. Relationships between airborne fungal spore presence and meteorological conditions were statistically investigated. A Shapiro-Wilk test revealed that the airborne Cladosporium and Alternaria spores differed from a normal distribution. Thus, a Friedmann test was performed followed by a Pearson Correlation Analysis. The effects of rainfall, temperature and wind speed on Cladosporium and Alternaria numbers were non-significant according to the sites and months (p > 0.05), but the effects of relative humidity on Cladosporium and Alternaria numbers were significant (p < 0.01). Spore concentrations reached to their highest levels in May 2001.
The aim was to investigate the impact of atmospheric pollen in determining allergic rhinitis. It was conducted with 130 patients with allergic rhinitis in three different sites in Eskisehir, Turkey, in 2000-2001, using a gravimetric method with a Durham sampler. Skin prick test results, the symptoms of patients and their findings all confirmed the presence of allergic reactions to pollen allergens in the patients observed. During the period, a total of 47,082 pollen grains/cm(2) belonging to 45 taxa were recorded. Of the total pollen grains, 81.0% were arboreal and 18% non-arboreal. The majority of the investigated pollen grains were from Pinaceae, Salix spp., Chenopodiaceae/Amaranthaceae, Cupressaceae and Poaceae. Pollen concentrations reached the highest level in May (54.36%). The pollen allergens provoking severe sensitization were grasscereal mixtures (58.5%), followed by arboreals (33.8%). All patients (100.0%) were sensitive to grass. This study emphasizes the significance of determining the types and concentrations of pollen with a view to comparing changes in highly concentrated allergens.
Pollen grains in the atmosphere of Sivrihisar were studied for a continuous period of 2 years (1 January 2005-31 December 2006) using a Durham sampler. During this period, pollen grains belonging to 41 taxa were recorded, 24 of which belonged to arboreal plants and 17 to non-arboreal. From these, 23,219 were identified in 2005 and 34,154 in 2006. Of the total pollen grains, 90.46% were arboreal, 9.43% non-arboreal, and 0.1% unidentifiable. The majority of the investigated allergic pollen grains were from Pinaceae, Cupressaceae, Fraxinus spp., Cedrus spp., Artemisia spp., Poaceae, Chenopodiaceae/Amaranthaceae, Populus spp., Quercus spp., Urticaceae and Asteraceae, respectively. Pollen concentrations reached their highest levels in May. This information was then established into a calendar form according to the pollens determined in 2005-2006, in terms of annual, monthly and weekly numbers of taxa fall per cm2. A comparison between the results and the meteorological factors revealed a close relationship between pollen concentrations in the air and meteorological conditions. An increase in pollination was also linked to increasing temperatures and the wind. It was therefore concluded that high temperatures and relative humidity were also effective in increasing the number of pollens in the air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.