The near-globally distributed ecto-parasitic mite of the Apis mellifera honeybee, Varroa destructor, has formed a lethal association with Deformed wing virus, a once rare and benign RNA virus. In concert, the two have killed millions of wild and managed colonies, particularly across the Northern Hemisphere, forcing the need for regular acaricide application to ensure colony survival. However, despite the short association (in evolutionary terms), a small but increasing number of A. mellifera populations across the globe have been surviving many years without any mite control methods. This long-term survival, or Varroa resistance, is consistently associated with the same suite of traits (recapping, brood removal and reduced mite reproduction) irrespective of location. Here we conduct an analysis of data extracted from 60 papers to illustrate how these traits connect together to explain decades of mite resistance data. We have potentially a unified understanding of natural Varroa resistance that will help the global industry achieve widespread miticide-free beekeeping and indicate how different honeybee populations across four continents have resolved a recent threat using the same suite of behaviours.
The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa’s association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies.
Varroa destructor is arguably the most important threat to Apis mellifera honey bees. Despite the recentness of the invasion of Varroa, A. mellifera colonies naturally resistant to the mite are being observed in a growing number of populations across Europe, South Africa and Brazil. Appearing in concert with this resistance is an increase in the ability of workers to detect mite-infested cells, which is closely associated with the recapping of such cells. However, many noninfested cells are also uncapped and then recapped which would appear to be a waste of time and energy. In this study we looked at the spatial patterns of recapping and its association with Varroa infestation to understand in what way the uncapping of non-infested cells occurs. We found that recapping occurred in clusters consisting of infested cells and their surrounding non-infested cells. This helped explain our finding that a significant positive correlation existed between levels of recapped infested and non-infested cells. Furthermore, we found that bees responded to an artificial increase in the mite infestation level by increasing their recapping behavior. We confirmed that the recapped area of non-infested cells was significantly smaller, relative to the holes made in the infested cells. Given these findings we propose that recapping behavior is stimulated either by a diffuse signal emanating from the infested cell or that cursory checks are conducted in the vicinity of an infested cell.
The Varroa destructor ectoparasitic mite has spread globally and in conjunction with Deformed Wing Virus has killed millions of honeybee ( Apis mellifera ) colonies. This has forced Northern hemisphere beekeepers into using miticides to avoid mass colony losses. However, in many Southern hemisphere countries widespread treatment did not occur since miticides were prohibitively expensive, or a centralised choice was made not to treat, both allowing natural selection to act. The Varroa mite initially caused high losses before mite-resistance appeared in the honeybee populations. Initially, mite-resistance was only associated with African and Africanised honeybees. Although recently, several isolated mite-resistant European honeybee populations have appeared. Here we studied the mite-resistance in Cuba and found high rates of recapping of infested worker cells (77%), high removal of mites (80%) and corresponding low mite fertility ( r = 0.77). These are all traits found in all naturally evolved Varroa-resistant populations. We can confirm Cuba has the world’s largest European mite-resistant population with 220,000 colonies that have been treatment-free for over two decades and illustrating the power of natural selection. Cuban honeybees are also highly productive, 40–70 kg of honey produced annually, and are mild mannered. Cuba is an excellent example of what is possible when honeybees are allowed to adapt naturally to Varroa with minimal human interference.
Varroa is a major world-wide pest to Western honey bees (Apis mellifera), causing huge ongoing losses of colonies every year. Conversely, the Eastern honey bee (Apis cerana) is less vulnerable to the mite having existed alongside it over a long evolutionary period. Research conducted during the 1980s and 1990s, shortly after Varroa had spread across the globe, concluded that the Eastern honey bee was less vulnerable because it displayed higher levels of grooming behaviour, brood removal behaviour and mite infertility than its Western counterpart. However, this review on these Varroa resistance traits in A. cerana indicates that there is surprisingly little evidence for these conclusions. This review explores this evidence and discusses the potential flaws in the studies and the gaps that still remain in our knowledge of Varroa resistance traits in A. cerana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.