Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating optimal timetable schedules with different copies by increasing the probability of giving the best schedule for each stage in the campus with the ability to replace the timetable when needed. The Evolutionary Algorithm (EA) utilized in this paper is the Genetic Algorithm (GA) which is a common multi-solution metaheuristic search based on the evolutionary population that can be applied to solve complex combinatorial problems like timetabling problems. In this work, all inputs: courses, teachers, and time acted by one array to achieve local search and combined this acting of the timetable by using the heuristic crossover to ensure that the essential conditions are not broken. The result of this work is a flexible scheduling system, which shows the diversity of all possible timetables that can be created depending on user conditions and needs.
This paper uses hybrid techniques to improve the rate of recognition for a face from identified data set of faces. These techniques are summarized by applying firstly the Haar discrete wavelet transformation method in order to enhance and compress the images of the data set and store the results for each process in a separate data set. Secondly, applying a hybrid method from two popular face recognition methods called Principal Component Analysis and Singular Value Decomposition for extracting feature from the images. This work applied by using a dataset contains 400 images for 40 different persons called Olivetti Research Laboratory (ORL). In calculating the distances between image vectors, Manhattan measurement is used and its show a very good results in recognition rate. From this work, it can be concluded that recognition rate increments with the decrementing in the number of dataset images and increasing the threshold value. The expended time in execution decreases in a very obvious way when using the compressed dataset rather than the enhanced dataset which its images has four times the size of the images in the compressed dataset.
Digital watermarking is a technique that embedded watermark in a different types of digital contents such that video, audio, and image to preservation these contents from reproduction or
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.