Analyses of the unsteady flow behaviour of a 5 MW horizontal-axis wind turbine (HAWT) rotor (Case I) and a rotor with tower (Case II) are carried out using a panel method and a RANSE method. The panel method calculations are obtained by applying the in-house boundary element method (BEM) panMARE code, which is based on the potential flow theory. The BEM is a three-dimensional first-order panel method which can be used for investigating various steady and unsteady flow problems. Viscous flow simulations are carried out by using the RANSE solver ANSYS CFX 14.5. The results of Case I allow for the calculation of the global integral values of the torque and the thrust and include detailed information on the local flow field, such as the pressure distribution on the blade sections and the streamlines. The calculated pressure distribution by the BEM is compared with the corresponding values obtained by the RANSE solver. The tower geometry is considered in the simulation in Case II, so the unsteady forces due to the interaction between the tower and the rotor blades can be calculated. The application of viscous and inviscid flow methods to predict the forces on the HAWT allows for the evaluation of the viscous effects on the calculated HAWT flows.
The present work includes a numerical study of natural convection heat transfer in symmetrical and unsymmetrical corrugated annuli filled with H 2 O-Al 2 O 3 nanofluid. In this study, higher and lower temperatures were kept constant at inner and outer cylinders of the annulus; respectively. Eight mathematical models with an aspect ratio of 1.5 were developed to find the best model giving the highest heat transfer rates. The stream-vorticity formulation in curvilinear coordinates was used to solve the governing equations of heat transfer and fluid motion. The influences of Rayleigh number. ðð10 3 Ra 10 6 Þ and volume fraction of nanoparticles. (0 ϕ 0:25Þ on isotherms, streamlines, local and average Nusselt numbers on the inner and outer cylinder were investigated. The results show that the heat transfer rate is significantly increased with an increase in nanoparticles volume fraction and Rayleigh number. The activity of the heated surface is increased with an increase in the undulation number, but the flow motion tends to be most difficult in the spaces between active undulation walls. Moreover, the heat transfer rates in unsymmetrical annuli are relatively higher than the rates in the symmetrical annuli. There are no evident changes in isotherms with an increase in the nanofluid volume fraction. Correlations for the mean Nusselt number on the inner and outer walls of annulus were deduced as a function of Rayleigh number and nanoparticles volume fraction for eight models with an accuracy range of 8-15 %.
Mixed convection heat transfer of Cu-water nanofluid in an arc cavity with non-uniform heating has been numerically studied. The top flat moving wall is isothermally cooled at Tc and moved with a constant velocity. While the heated arc stationary wall of the cavity is maintained at a hot temperature Th. FORTRAN code is used to solve the mass, momentum, and energy equations in dimensionless form with suitable boundary conditions. In this study, the Reynolds number changed from 1 to 2000, and the Rayleigh number changed from 0 to 10 7 . Also, the range of nanoparticles volume fraction extends from ϕ = 0 to 0.07. Stream vorticity method selected for the discretization of flow and energy equations. The present results are compared with the previous results for the validation part, where the results found a good agreement with the others works. The isotherms are regulated near the arc-shape wall causing a steep temperature gradient at these regions and the local and average heat transfer rate increases with increased volume fraction or Reynolds number or Rayleigh number. Finally, Correlation equations of the average Nusselt number from numerical results are presented.
Numerical study of mixed convection heat transfer in multi-Lid driven concentric trapezoidal annulus filled with H2O-Cu-Al2O3 hybrid nanofluid has been investigated. Three cases for multi-Lid driven have been studied: single lid-driven, double lid-driven move in the same direction, double lid-driven move in the opposite direction. The lid-driven walls move with a constant speed with constant cold temperature TC and the other inclined walls are insulated while the inner trapezoidal cylinder heated at constant temperature Th. Finite volume method used to solve the continuity, momentum, and energy equations by SIMPLE algorithm. The results validated by comparing with previous study with a good agreement of accuracy. The working fluids was: water with hybrid nanoparticles (volume fraction ϕ = 0 to 10%). The Richardson numbers changed from 0.01 to 10, to cover all convection heat transfer modes, and aspect ratios were 0.5 and 1. The results show that, the opposing flow produced highest maximum stream function. Moreover, in aiding flow (case 2) produced a heat transfer coefficient on the top and bottom walls of outer cylinder higher than that produced by the opposing flow (case 3). Generally, the skin friction increases with increase in the volume fraction of nanoparticles due to increasing the viscosity of fluid causes increase in shear stress and leads to increasing the pressure drop. Additionally, the aiding flow produced fiction factor higher than the opposing flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.