Most mycolic acid-containing actinobacteria and some proteobacteria use steroids as growth substrates, but the catabolism of the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants and has been proposed to be encoded by the KstR2-regulated genes, which include a predicted coenzyme A (CoA) transferase gene (ipdAB) and an acyl-CoA reductase gene (ipdC). In the presence of cholesterol, ΔipdC and ΔipdAB mutants of either M. tuberculosis or Rhodococcus jostii strain RHA1 accumulated previously undescribed metabolites: 3aα-H-4α(carboxyl-CoA)-5-hydroxy-7aβ-methylhexahydro-1-indanone (5-OH HIC-CoA) and (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA), respectively. A ΔfadE32 mutant of Mycobacterium smegmatis accumulated 4-methyl-5-oxo-octanedioic acid (MOODA). Incubation of synthetic 5-OH HIC-CoA with purified IpdF, IpdC, and enoyl-CoA hydratase 20 (EchA20), a crotonase superfamily member, yielded COCHEA-CoA and, upon further incubation with IpdAB and a CoA thiolase, yielded MOODA-CoA. Based on these studies, we propose a pathway for the final steps of steroid catabolism in which the 5-member ring is hydrolyzed by EchA20, followed by hydrolysis of the 6-member ring by IpdAB. Metabolites accumulated by ΔipdF and ΔechA20 mutants support the model. The conservation of these genes in known steroid-degrading bacteria suggests that the pathway is shared. This pathway further predicts that cholesterol catabolism yields four propionyl-CoAs, four acetyl-CoAs, one pyruvate, and one succinyl-CoA. Finally, a ΔipdAB M. tuberculosis mutant did not survive in macrophages and displayed severely depleted CoASH levels that correlated with a cholesterol-dependent toxicity. Our results together with the developed tools provide a basis for further elucidating bacterial steroid catabolism and virulence determinants in M. tuberculosis.
bBile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9␣-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. Bile salts are surface-active steroids with an important role in the uptake and metabolism of lipophilic substrates in vertebrates. These steroids, which include cholate and chenodeoxycholate, are synthesized in the liver from cholesterol, and their eventual fate is excretion in feces or urine. Bile salts may be modified, either by microbiological activity in the duodenum or by host cell bioactivity, leading to their conjugation to glycine, taurine, or sulfate. As such, biodegradation of the various bile salts is a significant process in carbon cycling in soil and aquatic environments. The processes involved in microbial transformation of steroids are also relevant for biotechnological applications in the synthesis and/or selective modification of steroid-based drugs (29).Despite the cytotoxicity of cholate toward various prokaryotic and eukaryotic cells, several bacterial species, especially members of the Proteobacteria (27, 28) and Actinomycetales (9, 32), are able to efficiently metabolize this substrate to sustain growth. Recent studies on microbial bile salts degradation have focused on the Proteobacteria. Genes encoding several steps in cholate degradation were identified, mainly in Comamonas testosteroni TA441 and Pseudomonas sp. strain Chol1. In the former strain, genes responsible for oxidation of the steroid nucleus were found (10-13), while in the latter, genes responsible for degradation of the cholate side chain were identified, in...
Summary The cholesterol catabolic pathway occurs in most mycolic acid‐containing actinobacteria, such as Rhodococcus jostii RHA1, and is critical for Mycobacterium tuberculosis (Mtb) during infection. FadD3 is one of four predicted acyl‐CoA synthetases potentially involved in cholesterol catabolism. A ΔfadD3 mutant of RHA1 grew on cholesterol to half the yield of wild‐type and accumulated 3aα‐H‐4α(3′‐propanoate)‐7aβ‐methylhexahydro‐1,5‐indanedione (HIP), consistent with the catabolism of half the steroid molecule. This phenotype was rescued by fadD3 of Mtb. Moreover, RHA1 but not ΔfadD3 grew on HIP. Purified FadD3Mtb catalysed the ATP‐dependent CoA thioesterification of HIP and its hydroxylated analogues, 5α‐OH HIP and 1β‐OH HIP. The apparent specificity constant (kcat/Km) of FadD3Mtb for HIP was 7.3 ± 0.3 × 105 M−1 s−1, 165 times higher than for 5α‐OH HIP, while the apparent Km for CoASH was 110 ± 10 μM. In contrast to enzymes involved in the catabolism of rings A and B, FadD3Mtb did not detectably transform a metabolite with a partially degraded C17 side‐chain. Overall, these results indicate that FadD3 is a HIP‐CoA synthetase that initiates catabolism of steroid rings C and D after side‐chain degradation is complete. These findings are consistent with the actinobacterial kstR2 regulon encoding ring C/D degradation enzymes.
Background: Mycobacterium tuberculosis (Mtb) degrades cholesterol throughout its infection cycle. Results: Cholesterol ring-degrading enzymes have higher activities with side chain degradation intermediates than with compounds with fully degraded side chains. Conclusion: Cholesterol side chain and ring degradation occur concurrently. Significance: Understanding bacterial cholesterol catabolism facilitates the design of novel therapeutics and the production of high value steroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.