According to the World Health Organization (WHO), Diabetes Mellitus (DM) is one of the most prevalent diseases in the world. It is also associated with a high mortality index. Diabetic foot is one of its main complications, and it comprises the development of plantar ulcers that could result in an amputation. Several works report that thermography is useful to detect changes in the plantar temperature, which could give rise to a higher risk of ulceration. However, the plantar temperature distribution does not follow a particular pattern in diabetic patients, thereby making it difficult to measure the changes. Thus, there is an interest in improving the success of the analysis and classification methods that help to detect abnormal changes in the plantar temperature. All this leads to the use of computer-aided systems, such as those involved in artificial intelligence (AI), which operate with highly complex data structures. This paper compares machine learning-based techniques with Deep Learning (DL) structures. We tested common structures in the mode of transfer learning, including AlexNet and GoogleNet. Moreover, we designed a new DL-structure, which is trained from scratch and is able to reach higher values in terms of accuracy and other quality measures. The main goal of this work is to analyze the use of AI and DL for the classification of diabetic foot thermograms, highlighting their advantages and limitations. To the best of our knowledge, this is the first proposal of DL networks applied to the classification of diabetic foot thermograms. The experiments are conducted over thermograms of DM and control groups. After that, a multi-level classification is performed based on a previously reported thermal change index. The high accuracy obtained shows the usefulness of AI and DL as auxiliary tools to aid during the medical diagnosis.
Chaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh-Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to generate robust random binary sequences that can be used in image encryption. This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate coefficient values of the mathematical models that produce high positive Lyapunov exponent and Kaplan-Yorke dimension values, which are computed using TISEAN. The randomness of both the Hopfield and the Hindmarsh-Rose neurons is evaluated from chaotic time series data by performing National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is done using field-programmable gate arrays whose architectures are used to develop an encryption system for RGB images. The success of the encryption system is confirmed by performing correlation, histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests.In [2] J.J. Hopfield introduced the neuron model that nowadays is known as the Hopfield neural network. Ten years later, a modified model of Hopfield neural network was proposed in [3], and applied in information processing. Immediately, the Hopfield neural network was adapted to generate chaotic behavior in [4] where the authors explored bifurcation diagrams. In [5] the simplified Hopfield neuron model was designed to use a sigmoid as activation function, and three neurons were used to generate chaotic behavior. In addition, the authors performed an optimization process updating the weights of the neurons interconnections. The Hopfield neuron was combined with a chaotic map in [6] to be applied in chaotic masking. More recently, the authors in [7] proposed an image encryption algorithm using the Hopfield neural network. In the same direction, the authors in [8] detailed the behavior of Hindmarsh-Rose neuron to generate chaotic behavior. Its bifurcation diagrams were described in [9], and the results were used to select the values of the model to improve chaotic behavior. Hindmarsh-Rose neurons were synchronized in [10], optimizing the scheme of Lyapunov function with two gain coefficients. In this way, the synchronization region is estimated by evaluating the Lyapunov stability. Two Hindmarsh-Rose neurons were synchronized in [11], and the system was used to mask information in continuous time. To show that the neurons generate chaotic behavior, one must compute Lyapunov exponents, and for the Hindmarsh-Rose neuron they were evaluated by the TISEAN package in [12].The Hopfield neural network has been widely applied in chaotic systems [13][14][15]. This network consists of three neurons, and the authors in [13] proposed a simplified model by removing the synaptic weight connection of the third and second neuron in the original Hopfield network. Numerical simulations were carried out considering values from t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.