Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A selfforming dynamic membrane only requires a support material over which a cake layer is formed, which determines the rejection properties of the system. The present research studies the application of self-forming dynamic membranes in AnMBRs. An AnMBR was operated under thermophilic and mesophilic conditions, using woven and non woven materials as support for the dynamic membranes. Results showed that the formation of a cake layer over the support materials enables the retention of more than 99% of the solids present in the reactor. However, only low levels of flux were achieved, up to 3 L/m 2 x h, and reactor operation was unstable, with sudden increases in filtration resistance, due to excessive cake layer formation. Further fine-tuning of the proposed technology involves looking for conditions that can control effectively cake layer formation.
Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A selfforming dynamic membrane only requires a support material over which a cake layer is formed, which determines the rejection properties of the system. The present research studies the application of self-forming dynamic membranes in AnMBRs. An AnMBR was operated under thermophilic and mesophilic conditions, using woven and non woven materials as support for the dynamic membranes. Results showed that the formation of a cake layer over the support materials enables the retention of more than 99% of the solids present in the reactor. However, only low levels of flux were achieved, up to 3 L/m 2 x h, and reactor operation was unstable, with sudden increases in filtration resistance, due to excessive cake layer formation. Further fine-tuning of the proposed technology involves looking for conditions that can control effectively cake layer formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.