Our study aimed to analyze the effect of ouabain administration on lipopolysaccharide (LPS)-induced changes in oxidative parameters, membrane lipid composition, and the activities of some important enzymes of the nervous system. The content of phospholipids, cholesterol, and gangliosides were analyzed in Wistar rats after intraperitoneal injection of ouabain (1.8 μg/kg), LPS (200 μg/kg), or saline. Oxidative parameters were also evaluated, including the activities of superoxide dismutase, catalase and glutathione peroxidase, the levels of glutathione and lipid peroxidation, as well as Na,K-ATPase activity and the level of glutamate transporter EAAT4. Administration of LPS resulted in increased oxidative stress, as evidenced by an increase in lipid peroxidation levels, glutathione peroxidase activity, decreased catalase activity and reduced glutathione levels. All changes recorded were attenuated by pretreatment with ouabain. Administration of ouabain plus LPS enhanced the total ganglioside content and EAAT4 levels, but failed to alter the Na,K-ATPase activity. Our data suggest a neuroprotective effect of ouabain against LPS-induced oxidative stress by promoting membrane lipid remodeling and increasing the expression of glutamate transporter EAAT4. Our results emphasize that the observed oxidative stress is not correlated with Na,K-ATPase, but with a possible ouabain-mediated effect on cellular signaling. The relevance of our results extends beyond LPS-induced changes in oxidative parameters, as nanomolar doses of ouabain might prove useful in neurodegenerative models. Further study of other cardenolides and related molecules, as well as the development of new molecules derived from ouabain, could also prove useful in the fight against the oxidative and/or general cell stress triggered by neuronal pathologies.
Our study aimed to analyze the effect of ouabain (OUA) administration on lipopolysaccharide (LPS)-induced changes in hippocampus of rats. Oxidative parameters were analyzed in Wistar rats after intraperitoneal injection of OUA (1.8 µg/kg), LPS (200 µg/kg), or OUA plus LPS or saline. To reach our goal, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), in addition to levels of reduced glutathione (GSH), protein carbonyl (PCO) and lipid peroxidation (LPO) were evaluated. We also analyzed the membrane lipid profile and some important lipids for the nervous system, such as phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidic acid and sphingomyelin. The group that received only LPS showed increased oxidative stress, as evidenced by an increase in LPO (about twice), PCO (about three times) levels, and CAT activity (80%).Conversely, administration of LPS decreased GSH levels (55%), and GPx activity (30%), besides a reduction in the amount of PI (60%) and PC (45%). By other side, OUA alone increased the amount of PI (45%), PE (85%), and PC (70%). All harmful effects recorded were attenuated by OUA, suggesting a protective effect against LPS-induced oxidative stress. The relevance of our results extends beyond changes in oxidative parameters induced by LPS, because nanomolar doses of OUA may be useful in neurodegenerative models.Other studies on other cardenolides and substances related issues, as well as the development of new molecules derived from OUA, could also be useful in general oxidative and/or cellular stress, a condition favoring the appearance of neuronal pathologies. K E Y W O R D S hippocampus, lipopolysaccharide, membrane lipids, ouabain, oxidative stress J Cell Biochem. 2019;120:4081-4091. wileyonlinelibrary.com/journal/jcb How to cite this article: Garcia IJP, Kinoshita PF, Silva LNDe, et al. Ouabain attenuates oxidative stress and modulates lipid composition in hippocampus of rats in lipopolysaccharide-induced hypocampal neuroinflammation in rats.
The effects of ouabain (OUA) and lipopolysaccharide (LPS) in vivo on hippocampal membranes (RHM) of Wistar male rats aged 3 months were analyzed. After intraperitoneal (i.p.) injection of OUA only, LPS only, OUA plus LPS, or saline, the content of proteins, phospholipids, cholesterol and gangliosides from RHM was analyzed. The total protein and cholesterol contents of RHM were not significantly affected by OUA or LPS for the experimentally paired groups. In contrast, total phospholipids and gangliosides were strongly modulated by either OUA or LPS treatments. LPS reduced the total phospholipids (roughly 23 %) and increased the total gangliosides (approximately 40 %). OUA alone increased the total phospholipids (around 23 %) and also the total gangliosides (nearly 34 %). OUA pretreatment compensated the LPS-induced changes, preserving the total phospholipids and gangliosides around the same levels of the control. Thus, an acute treatment with OUA not only modulated the composition of hippocampal membranes from 3-month-old rats, but also was apparently able to counteract membrane alterations resulting from LPS-induced neuroinflammation. This study demonstrates for the first time that the OUA capacity modulates the lipid composition of hippocampal plasma membranes from rats with LPS-induced neuroinflammation.
Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1), iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5%) than in women and was associated with an increase (446%) in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS) and an increase (327%) in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132%) in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.