This review deals with the major problems of unattached Gracilaria intensive cultivation in outdoor tanks and ponds. These problems are presented through the main variables affecting the Gracilaria annual yield and the updated solutions evolved. The physical variables include tank and pond structure, seawater characteristics such as velocity, agitation practice, exchange rate, and salinity, light characteristics such as quantity and quality, and temperature modelling. The chemical variables include nutrient composition and regime of application, and inorganic carbon supply with the pH changes involved. The biological variables include seaweed density, epiphyte competition, grazer damage, bacterial disintegration, integrated mariculture and strain selection. The experience gained in the Israeli research on Gracilaria cultivation is discussed in view of other Gracilaria and seaweed intensive cultivation research.
The effects of nitrogen limitation on laboratory cultures of Porphyridium purpureum Bory, Drew and Ross were studied under continuous white light illumination (35 μE · m−2· s−1). Growth ceased, respiration exceeded photosynthesis, chlorophyll content was reduced by 80%, and phycoerythrin content was reduced by 99% over a period of 14 days under nitrogen limitation. Recovery upon addition of nitrogen resulted in increased phycobiliprotein content, appearance of phycobilisomes attached to the thylakoids, increased oxygen evolution, and increased fluorescence emission from photosystem 1 (720 nm) and photosystem 2 (685 nm) upon excitation by green light. Growth resumed after 72 h and was concomitant with an increase of chlorophyll, phycoerythrin and phycobilisomes per thylakoid area. The results suggest that photosystem 1 was less affected by nitrogen starvation than photosystem 2 and that the recovery was largely dependent on the restoration of phycobilisomes and other photosystem components.
The optimal photon fluence rate for growth of tha llus tips of Gracilaria sp. was low (about 100 μE·–2·1); higher photon fluence rates inhibited growth. Both phycoerythrin (PE) and chlorophyll (chl) contents decreased with increasing photon fluence rates (up to 100 μE·–m–2s–1) in a fashion inverse to the growth response. Chl/PE ratios varied directly as the growth response over a larger photon fluence rate range. The peak chl/PE ratios were obtained at a photon fluence rate optimal for growth, suggesting that this parameter may be used to estimate in situ growth rates. A low compensation point (about 7 μE·–2s–1) was observed for low light (15 μE·–2s–1) grown plants. This compensation point was also obtained for growth in the long–term (5–6 weeks) experiments. Plants grown at 60 and 140 μE·–2s–1 showed higher light compensation and saturation points, suggesting that the variations in pigment composition found between the different treatments determine the photosynthetic responses at sub–optimal photon fluence rates. Photosynthetic rates at light saturation were the same, on a biomass basis, for plants grown at the various photon fluence rates. Thus, the photosynthetic dark reactions were not influenced by previous light regimes. It is suggested that maximal photosynthetic rates expressed on a biomass basis better reflect the potential productivity at tight saturation than if expressed on a pigment basis. Gracilaria sp. grew better under non–filtered fluorescent and greenish than under reddish and blue–enriched light of equal and sub–optimal photon, fluence rate. However, the pigment relations of the algae did not change in a direction complementary to the light composition at which they grew. This, together with the relatively higher photosynthetic rates under reddish and blueish light for plants previously grown under reddish and blueish light, suggests that adaptations to variouslight spectra are based on mechanisms different from complementary chromatic adaptation of the pigments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.