Heparan sulfate proteoglycans interact with many extracellular matrix constituents, growth factors and enzymes. Degradation of heparan sulfate by endoglycosidic heparanase cleavage affects a variety of biological processes. We have purified a 50-kDa heparanase from human hepatoma and placenta, and now report cloning of the cDNA and gene encoding this enzyme. Expression of the cloned cDNA in insect and mammalian cells yielded 65-kDa and 50-kDa recombinant heparanase proteins. The 50-kDa enzyme represents an N-terminally processed enzyme, at least 100-fold more active than the 65-kDa form. The heparanase mRNA and protein are preferentially expressed in metastatic cell lines and specimens of human breast, colon and liver carcinomas. Low metastatic murine T-lymphoma and melanoma cells transfected with the heparanase cDNA acquired a highly metastatic phenotype in vivo, reflected by a massive liver and lung colonization. This represents the first cloned mammalian heparanase, to our knowledge, and provides direct evidence for its role in tumor metastasis. Cloning of the heparanase gene enables the development of specific molecular probes for early detection and treatment of cancer metastasis and autoimmune disorders.
Cleavage of heparan sulfate (HS) proteoglycans affects the integrity and function of tissues and thereby fundamental phenomena, involving cell migration and response to changes in the extracellular microenvironment. The role of HS-degrading enzymes, commonly referred to as heparanases, in normal development has not been identified. The present study focuses on cloning, expression, and properties of a chicken heparanase and its distribution in the developing chicken embryo. We have identified a chicken EST, homologous to the recently cloned human heparanase, to clone and express a functional chicken heparanase, 60% homologous to the human enzyme. The full-length chicken heparanase cDNA encodes a 60-kDa proenzyme that is processed at the N terminus into a 45-kDa highly active enzyme. The most prominent difference between the chicken and human enzymes resides in the predicted signal peptide sequence, apparently accounting for the chicken heparanase being readily secreted and localized in close proximity to the cell surface. In contrast, the human enzyme is mostly intracellular, localized in perinuclear granules. Cells transfected with a chimeric construct composed of the chicken signal peptide preceding the human heparanase exhibited cell surface localization and secretion of heparanase, similar to cells transfected with the full-length chicken enzyme. We examined the distribution pattern of the heparanase enzyme in the developing chicken embryo. Both the chicken heparanase mRNA and protein were expressed, as early as 12 h post fertilization, in cells migrating from the epiblast and forming the hypoblast layer. Later on (72 h), the enzyme is preferentially expressed in cells of the developing vascular and nervous systems. Cloning and characterization of heparanase, the first and single functional vertebrate HS-degrading enzyme, may lead to identification of other glycosaminoglycan degrading enzymes, toward elucidation of their significance in normal and pathological processes.
Mycobacterium paratuberculosis (MPT) is the etiological agent of paratuberculosis. The disease is prevalent throughout the world, and exacts a heavy financial toll. At present, the only means of controlling this disease are culling or vaccination. The existing vaccines are not very efficient and produce a long-lasting local reaction at the point of injection and induce anti-bodies/delayed-type hypersensitivity (DTH) reaction that cannot be differentiated from those of naturally infected animals. New potent acellular vaccines that allow discrimination between infected and vaccinated animals are necessary to improve the control of this disease. We have isolated, overexpressed and purified the 85B antigen of MPT, and characterized the immune response induced by this antigen in mice. Our results showed that the recombinant MPT 85B (rMPT 85B) antigen induced a high production of interferon (IFN)gamma, interleukin (IL)-6, IL-10 and nitric oxide (NO). Spleen cells from mice immunized with rMPT 85B in Ribi adjuvant produced a higher level of IL-10 and NO than spleen cells of mice immunized with rMPT 85B only. In contrast, the addition of Ribi to the immunization protocol resulted in a lower amount of IFNgamma released by spleen cells. The levels of spleen cells proliferation in mice vaccinated with the rMPT 85B protein alone or with rMPT 85B with Ribi adjuvant were, respectively, four times or five times greater than in the control mice. The Ribi adjuvant induced significantly higher anti-85B antibody production of all classes tested and increased the IgG1/IgG2a ratio. DTH responses in mice footpads were observed only in mice immunized with rMPT 85B emulsified in Ribi. rMPT 85B induced both a Th1 and Th2 type of immune response with the later slightly more pronounced when the vaccination protocol comprised Ribi as an adjuvant. The rMPT 85B antigen elicited a strong immune response and can be considered as a potential candidate for a future acellular vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.