Salicornia species are halophyte plants that are an important source for food, pharmacy, and bioenergy. They can be consumed as a leafy vegetable, but they can accumulate heavy metals that carry a health risk when knowledge of how each species behaves in different types of soil is lacking. This present work aimed to determine to what extent S. ramosissima can be cultivated as food in estuaries contaminated by heavy metals and to what extent it can be used in phytoremediation works, by studying its behavior in populations that grow naturally in contaminated soils. We analyzed accumulation and translocation in different parts of the plant for 14 heavy metals and calculated the Health Risk Index value associated with their consumption as a leafy vegetable. The results obtained mean that the S. ramosissima plants that grow in most of the soils of this estuary are unfit for human consumption in some of the populations studied. In conclusion, Salicornia ramosissima J. Woods can accumulate Cd, As, and Pb—among other metals—in its leaves so its consumption should be limited to plants that grow in soils free of these metals.
The influence of different concentrations of heavy metals (Cu, Mn, Ni, Zn) was analyzed in the Salsola vermiculata germination pattern, seedling development, and accumulation in seedlings. The responses to different metals were dissimilar. Germination was only significantly reduced at Cu and Zn 4000 μM but Zn induced radicle growth at lower concentrations. Without damage, the species acted as a good accumulator and tolerant for Mn, Ni, and Cu. In seedlings, accumulation increased following two patterns: Mn and Ni, induced an arithmetic increase in content in tissue, to the point where the content reached a maximum; with Cu and Ni, the pattern was linear, in which the accumulation in tissue was directly related to the metal concentration in the medium. Compared to other Chenopodiaceae halophyte species, S. vermiculata seems to be more tolerant of metals and is proposed for the phytoremediation of soils contaminated by heavy metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.