Reagent guides ranking commonly used reagents for 15 transformations have been developed to reduce the environmental impact of drug discovery and development. Reagents have been scored by a combination of health, safety and environmental risk phrases, life cycle analysis (where possible) and an assessment of the chemistry including considerations of atom efficiency, stoichiometry, work-up and other issues. Guides covering alkene reduction, amide formation, C-H bromination, C-H chlorination, deoxychlorination, epoxidation, ester formation, ether formation, fluorination, iodination, ketone reduction, nitro reduction, oxidation of alcohols to aldehydes and ketones, reductive amination and sulfur oxidation are shared, with an explanation of the methodology behind their generation. † Electronic supplementary information (ESI) available. See
The first cocrystal structure of a bacterial FabH condensing enzyme and a small molecule inhibitor is reported. The inhibitor was obtained by rational modification of a high throughput screening lead with the aid of a S. pneumoniae FabH homology model. This homology model was used to design analogues that would have both high affinity for the enzyme and appropriate aqueous solubility to facilitate cocrystallization studies.
Pulmonary edema is a common ailment of heart failure patients and has remained an unmet medical need due to dose-limiting side effects associated with current treatments. Preclinical studies in rodents have suggested that inhibition of transient receptor potential vanilloid-4 (TRPV4) cation channels may offer an alternativeand potentially superiortherapy. Efforts directed toward small-molecule antagonists of the TRPV4 receptor have led to the discovery of a novel sulfone pyrrolidine sulfonamide chemotype exemplified by lead compound 6. Design elements toward the optimization of TRPV4 activity, selectivity, and pharmacokinetic properties are described. Activity of leading exemplars 19 and 27 in an in vivo model suggestive of therapeutic potential is highlighted herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.