Fascioliasis is a neglected trematode infection caused by Fasciola gigantica and Fasciola hepatica. Routine diagnosis of fascioliasis relies on macroscopic identification of adult worms in liver tissue of slaughtered animals, and microscopic detection of eggs in fecal samples of animals and humans. However, the diagnostic accuracy of morphological techniques and stool microscopy is low. Molecular diagnostics (e.g., polymerase chain reaction (PCR)) are more reliable, but these techniques are not routinely available in clinical microbiology laboratories. Matrix-assisted laser/desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a widely-used technique for identification of bacteria and fungi; yet, standardized protocols and databases for parasite detection need to be developed. The purpose of this study was to develop and validate an in-house database for Fasciola species-specific identification. To achieve this goal, the posterior parts of seven adult F. gigantica and one adult F. hepatica were processed and subjected to MALDI-TOF MS to create main spectra profiles (MSPs). Repeatability and reproducibility tests were performed to develop the database. A principal component analysis revealed significant differences between the spectra of F. gigantica and F. hepatica. Subsequently, 78 Fasciola samples were analyzed by MALDI-TOF MS using the previously developed database, out of which 98.7% (n = 74) and 100% (n = 3) were correctly identified as F. gigantica and F. hepatica, respectively. Log score values ranged between 1.73 and 2.23, thus indicating a reliable identification. We conclude that MALDI-TOF MS can provide species-specific identification of medically relevant liver flukes.
Taenia saginata is a helminth that can cause taeniasis in humans and cysticercosis in cattle. A species-specific diagnosis and differentiation from related species (e.g., Taenia solium) is crucial for individual patient management and disease control programs. Diagnostic stool microscopy is limited by low sensitivity and does not allow discrimination between T. saginata and T. solium. Molecular diagnostic approaches are not routinely available outside research laboratories. Recently, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) was proposed as a potentially suitable technique for species-specific helminth diagnosis. However, standardized protocols and commercial databases for parasite identification are currently unavailable, and pre-analytical factors have not yet been assessed. The purpose of this study was to employ MALDI-TOF MS for the identification of T. saginata proglottids obtained from a human patient, and to assess the effects of different sample storage media on the technique’s diagnostic accuracy. We generated T. saginata-specific main spectral profiles and added them to an in-house database for MALDI-TOF MS-based diagnosis of different helminths. Based on protein spectra, T. saginata proglottids could be successfully differentiated from other helminths, as well as bacteria and fungi. Additionally, we analyzed T. saginata proglottids stored in (i) LC–MS grade water; (ii) 0.45% sodium chloride; (iii) 70% ethanol; and (iv) 37% formalin after 2, 4, 6, 8, 12, and 24 weeks of storage. MALDI-TOF MS correctly identified 97.2–99.7% of samples stored in water, sodium chloride, and ethanol, with log-score values ≥2.5, thus indicating reliable species identification. In contrast, no protein spectra were obtained for samples stored in formalin. We conclude that MALDI-TOF-MS can be successfully employed for the identification of T. saginata, and that water, sodium chloride, and ethanol are equally effective storage solutions for prolonged periods of at least 24 weeks.
Helminth infections caused by nematodes, trematodes, and cestodes are major neglected tropical diseases and of great medical and veterinary relevance. At present, diagnosis of helminthic diseases is mainly based on microscopic observation of different parasite stages, but microscopy is associated with limited diagnostic accuracy. Against this background, recent studies described matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry as a potential, innovative tool for helminth identification and differentiation. MALDI-TOF mass spectrometry is based on the analysis of spectra profiles generated from protein extracts of a given pathogen. It requires an available spectra database containing reference spectra, also called main spectra profiles (MSPs), which are generated from well characterized specimens. At present, however, there are no commercially available databases for helminth identification using this approach. In this narrative review, we summarize recent developments and published studies between January 2019 and September 2022 that report on the use of MALDI-TOF mass spectrometry for helminths. Current challenges and future research needs are identified and briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.