The COVID-19 pandemic, caused by SARS coronavirus 2 (SARS-CoV-2), has resulted in excess morbidity and mortality as well as economic decline. To characterise the systemic host immune response to SARS-CoV-2, we performed single-cell RNA-sequencing coupled with analysis of cell surface proteins, providing molecular profiling of over 800,000 peripheral blood mononuclear cells from a cohort of 130 patients with COVID-19. Our cohort, from three UK centres, spans the spectrum of clinical presentations and disease severities ranging from asymptomatic to critical. Three control groups were included: healthy volunteers, patients suffering from a non-COVID-19 severe respiratory illness and healthy individuals administered with intravenous lipopolysaccharide to model an acute inflammatory response. Full single cell transcriptomes coupled with quantification of 188 cell surface proteins, and T and B lymphocyte antigen receptor repertoires have provided several insights into COVID-19: 1. a new non-classical monocyte state that sequesters platelets and replenishes the alveolar macrophage pool; 2. platelet activation accompanied by early priming towards megakaryopoiesis in immature haematopoietic stem/progenitor cells and expansion of megakaryocyte-primed progenitors; 3. increased clonally expanded CD8+ effector:effector memory T cells, and proliferating CD4+ and CD8+ T cells in patients with more severe disease; and 4. relative increase of IgA plasmablasts in asymptomatic stages that switches to expansion of IgG plasmablasts and plasma cells, accompanied with higher incidence of BCR sharing, as disease severity increases. All data and analysis results are available for interrogation and data mining through an intuitive web portal. Together, these data detail the cellular processes present in peripheral blood during an acute immune response to COVID-19, and serve as a template for multi-omic single cell data integration across multiple centers to rapidly build powerful resources to help combat diseases such as COVID-19.
The human mononuclear phagocyte (MP) system, which includes dendritic cells, monocytes, and macrophages, is a critical regulator of innate and adaptive immune responses. During embryonic development, MPs derive sequentially in yolk sac progenitors, fetal liver, and bone marrow haematopoietic stem cells. MPs maintain tissue homeostasis and confer protective immunity in post-natal life. Recent evidence – primarily in animal models – highlight their critical role in coordinating the remodeling, maturation, and repair of target organs during embryonic and fetal development. However, the molecular regulation governing chemotaxis, homeostasis, and functional diversification of resident MP cells in their respective organ systems during development remains elusive. In this review, we summarize the current understanding of the development and functional contribution of tissue MPs during human organ development and morphogenesis and its relevance to regenerative medicine. We outline how single-cell multi-omic approaches and next-generation ex-vivo organ-on-chip models provide new experimental platforms to study the role of human MPs during development and disease.
75Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic 76 stem cells/multipotent progenitors (HSC/MPPs), yet remains poorly defined in humans. Using single 77 cell transcriptome profiling of ~133,000 fetal liver and ~65,000 fetal skin and kidney cells, we identify 78 the repertoire of blood and immune cells in first and early second trimesters of development. From this 79 data, we infer differentiation trajectories from HSC/MPPs, and evaluate the impact of tissue 80 microenvironment on blood and immune cell development. We predict coupling of mast cell 81 differentiation with erythro-megakaryopoiesis and identify physiological erythropoiesis in fetal skin. 82We demonstrate a shift in fetal liver haematopoietic composition during gestation away from being 83 erythroid-predominant, accompanied by a parallel change in HSC/MPP differentiation potential, which 84 we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the 85 study of paediatric blood and immune disorders, and a valuable reference for understanding and 86 harnessing the therapeutic potential of HSC/MPPs. 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
Throughout postnatal life, haematopoiesis in the bone marrow (BM) maintains blood and immune cell production. Haematopoiesis first emerges in human BM at 12 post conception weeks while fetal liver (FL) haematopoiesis is still expanding. Yet, almost nothing is known about how fetal BM evolves to meet the highly specialised needs of the fetus and newborn infant. Here, we detail the development of fetal BM including stroma using single cell RNA-sequencing. We find that the full blood and immune cell repertoire is established in fetal BM in a short time window of 6-7 weeks early in the second trimester. Fetal BM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell (DC) subsets emerging for the first time. B-lymphocyte expansion occurs, in contrast with erythroid predominance in FL at the same gestational age. We identify transcriptional and functional differences that underlie tissue-specific identity and cellular diversification in fetal BM and FL. Finally, we reveal selective disruption of B-lymphocyte, erythroid and myeloid development due to cell intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in the fetal BM from constitutional chromosome anomaly Down syndrome during this crucial developmental time window.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.