Abstract. We identified 480 persons with positive thick smears for asexual Plasmodium falciparum parasites, of whom 454 had positive rapid diagnostic tests (RDTs) for the histidine-rich protein 2 (HRP2) product of the hrp2 gene and 26 had negative tests. Polymerase chain reaction (PCR) amplification for the histidine-rich repeat region of that gene was negative in one-half (10/22) of false-negative specimens available, consistent with spontaneous deletion. False-negative RDTs were found only in persons with asymptomatic infections, and multiplicities of infection (MOIs) were lower in persons with false-negative RDTs (both P < 0.001). These results show that parasites that fail to produce HRP2 can cause patent bloodstream infections and false-negative RDT results. The importance of these observations is likely to increase as malaria control improves, because lower MOIs are associated with false-negative RDTs and false-negative RDTs are more frequent in persons with asymptomatic infections. These findings suggest that the use of HRP2-based RDTs should be reconsidered.
SummaryBackgroundArtemether–lumefantrine and artesunate–amodiaquine are used as first-line artemisinin-based combination therapies (ACTs) in west Africa. Pyronaridine–artesunate and dihydroartemisinin–piperaquine are potentially useful for diversification of ACTs in this region, but further safety and efficacy data are required on malaria retreatment.MethodsWe did a randomised, multicentre, open-label, longitudinal, controlled phase 3b/4 clinical trial at seven tertiary centres in Burkina Faso, Guinea, and Mali. Eligible participants for first malaria episode and all retreatment episodes were adults and children aged 6 months and older with microscopically confirmed Plasmodium spp malaria (>0 to <200 000 parasites per μL of blood) and fever or history of fever in the previous 24 h. Individuals with severe or complicated malaria, an alanine aminotransferase concentration of more than twice the upper limit of normal, or a QTc greater than 450 ms were excluded. Using a randomisation list for each site, masked using sealed envelopes, participants were assigned to either pyronaridine–artesunate or dihydroartemisinin–piperaquine versus either artesunate–amodiaquine or artemether–lumefantrine. Block sizes were two or four if two treatments were allocated, and three or six if three treatments were allocated. Microscopists doing the parasitological assessments were masked to treatment allocation. All treatments were once-daily or twice-daily tablets or granules given orally and dosed by bodyweight over 3 days at the study centre. Patients were followed up as outpatients up to day 42, receiving clinical assessments on days 0, 1, 2, 3, 7, 14, 21, 28, 35, and 42. Two primary outcomes were compared for non-inferiority: the 2-year incidence rate of all microscopically confirmed, complicated and uncomplicated malaria episodes in patients in the intention-to-treat population (ITT; non-inferiority margin 20%); and adequate clinical and parasitological response (ACPR) in uncomplicated malaria across all episodes (unadjusted and PCR-adjusted for Plasmodium falciparum and unadjusted for other Plasmodium spp) in the per-protocol population on days 28 and 42 (non-inferiority margin 5%). Safety was assessed in all participants who received one dose of study drug. This study is registered at the Pan African Clinical Trials Registry (PACTR201105000286876).FindingsBetween Oct 24, 2011, and Feb 1, 2016, we assigned 4710 eligible participants to the different treatment strategies: 1342 to pyronaridine–artesunate, 967 to artemether–lumefantrine, 1061 to artesunate–amodiaquine, and 1340 to dihydroartemisinin–piperaquine. The 2-year malaria incidence rate in the ITT population was non-inferior for pyronaridine–artesunate versus artemether–lumefantrine (1·77, 95% CI 1·63–1·93 vs 1·87, 1·72–2·03; rate ratio [RR] 1·05, 95% CI 0·94–1·17); and versus artesunate–amodiaquine (1·39, 95% CI 1·22–1·59 vs 1·35, 1·18–1·54; RR 0·97, 0·87–1·07). Similarly, this endpoint was non-inferior for dihydroartemisinin–piperaquine versus artemether–lumefantrine (1·16...
A double blind, randomized, controlled Phase 2 clinical trial was conducted to assess the safety, immunogenicity, and biologic impact of the vaccine candidate Apical Membrane Antigen 1-Combination 1 (AMA1-C1), adjuvanted with Alhydrogel ® . Participants were healthy children 2-3 years old living in or near the village of Bancoumana, Mali. A total of 300 children received either the study vaccine or the comparator. No impact of vaccination was seen on the primary endpoint, the frequency of parasitemia measured as episodes >3000 per μL per day at risk. There was a negative impact of vaccination on the hemoglobin level during clinical malaria, and mean incidence of hemoglobin <8.5 g/dL, in the direction of lower hemoglobin in the children who received AMA1-C1, although these differences were not significant after correction for multiple tests. These differences were not seen in the second year of transmission.
Summary Background Seasonal malaria chemoprevention (SMC) aims to prevent malaria in children during the high malaria transmission season. The Achieving Catalytic Expansion of SMC in the Sahel (ACCESS-SMC) project sought to remove barriers to the scale-up of SMC in seven countries in 2015 and 2016. We evaluated the project, including coverage, effectiveness of the intervention, safety, feasibility, drug resistance, and cost-effectiveness. Methods For this observational study, we collected data on the delivery, effectiveness, safety, influence on drug resistance, costs of delivery, impact on malaria incidence and mortality, and cost-effectiveness of SMC, during its administration for 4 months each year (2015 and 2016) to children younger than 5 years, in Burkina Faso, Chad, The Gambia, Guinea, Mali, Niger, and Nigeria. SMC was administered monthly by community health workers who visited door-to-door. Drug administration was monitored via tally sheets and via household cluster-sample coverage surveys. Pharmacovigilance was based on targeted spontaneous reporting and monitoring systems were strengthened. Molecular markers of resistance to sulfadoxine–pyrimethamine and amodiaquine in the general population before and 2 years after SMC introduction was assessed from community surveys. Effectiveness of monthly SMC treatments was measured in case-control studies that compared receipt of SMC between patients with confirmed malaria and neighbourhood-matched community controls eligible to receive SMC. Impact on incidence and mortality was assessed from confirmed outpatient cases, hospital admissions, and deaths associated with malaria, as reported in national health management information systems in Burkina Faso and The Gambia, and from data from selected outpatient facilities (all countries). Provider costs of SMC were estimated from financial costs, costs of health-care staff time, and volunteer opportunity costs, and cost-effectiveness ratios were calculated as the total cost of SMC in each country divided by the predicted number of cases averted. Findings 12 467 933 monthly SMC treatments were administered in 2015 to a target population of 3 650 455 children, and 25 117 480 were administered in 2016 to a target population of 7 551 491. In 2015, among eligible children, mean coverage per month was 76·4% (95% CI 74·0–78·8), and 54·5% children (95% CI 50·4–58·7) received all four treatments. Similar coverage was achieved in 2016 (74·8% [72·2–77·3] treated per month and 53·0% [48·5–57·4] treated four times). In 779 individual case safety reports over 2015–16, 36 serious adverse drug reactions were reported (one child with rash, two with fever, 31 with gastrointestinal disorders, one with extrapyramidal syndrome, and one with Quincke's oedema). No cases of severe skin reactions (Stevens-Johnson or Lyell syndrome) were reported. SMC treatment was associated with a protective effectiveness of 88·2% (95% CI 78·7–93·4) over 28 days in case-c...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.